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In this paper, a behavioral mean-variance portfolio selection problem in continuous time is formulated 

and studied. Unlike in the standard mean-variance portfolio selection problem, the cumulative distribu- 

tion function of the cash flow is distorted by the probability distortion function used in the behavioral 

mean-variance portfolio selection problem. With the presence of distortion functions, the convexity of 

the optimization problem is ruined, and the problem is no longer a conventional linear-quadratic (LQ) 

problem, and we cannot apply conventional optimization tools like convex optimization and dynamic 

programming. To address this challenge, we propose and demonstrate a solution scheme by taking the 

quantile function of the terminal cash flow as the decision variable, and then replace the corresponding 

optimal terminal cash flow with the optimal quantile function. This allows the efficient frontier and the 

efficient strategy to be exploited. 
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1. Introduction 

The modern portfolio selection theory is a theory of investment

that attempts to maximize a portfolio’s expected return given

a particular amount of portfolio risk. This theory also tries to

minimize risk for a given level of expected return by choosing

the proportions of various assets that make up the portfolio. Since

the fundamental work of Markowitz (1952) , the mean-variance

optimization problem has become one of the key topics in fi-

nancial theory and a rather popular criterion to measure risk.

The mean-variance portfolio selection problem tries to seek out

the best allocation of wealth among a variety of securities so as

to achieve the optimal trade-off between the risk over a fixed

time horizon and the expected return on investment. Markowitz

(1952) provided a fundamental basis for portfolio construction in

a single period, in which the risk of a portfolio was measured by

the variance of its return and the benefit was measured by the

expected return. Markowitz formulates how to minimize a portfo-

lio’s variance subject to the constraint in which the expectation of

the portfolio equals the prescribed level. Such an optimal portfolio

is said to be variance minimizing. If it also achieves the maximum

expected return among all portfolios having the same variance
∗ Corresponding author. 
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f return, then it is said to be an efficient strategy (or efficient

ortfolio). The two-dimensional set of points of efficient portfolios

n the mean-variance plan is called the efficient frontier. After the

ork of Markowitz (1952) , mean-variance criterion has become

opular in finance theory for measuring risk and is widely used

ithin main stream literature. See e.g. Merton (1972) , Zhou and

i (20 0 0) , Li, Zhou, and Lim (2002) , Bielecki, Jin, Pliska, and Zhou

2005) , Markowitz (2014) , Cui, Gao, Li, and Li (2014) , Yao, Li, and

i (2016) , Dang and Forsyth (2016) , Lioui and Poncet (2016) , and

ay and Jenamani (2016) . 

Substantial evidences, such as the Friedman and Savage puzzle

 Friedman & Savage, 1948 ), the Allais (1953) , the Ellesberg para-

ox ( Ellesberg, 1961 ), and the equity premium puzzle ( Mehra &

rescott, 1985 ), indicate that decision makers do not usually treat

robabilities linearly. Specifically, people tend to overestimate

mall probabilities and underestimate large probabilities. One way

o model such distortions in decision making is through a prob-

bility weighting function, which uses a nonlinear transformation

o the underlying probability measurement when risky choices are

valuated. 

The probability weighting function is introduced by Yarri’s

dual theory of choice” ( Yaari, 1987 ), which attempts to model

ecision making issues as mentioned above. The main feature of

his theory is that an investor will distort the probability cumu-

ative function of the random payment used as the basis of this

heory. As Yaari (1987) shows, the probability distortion function

https://doi.org/10.1016/j.ejor.2018.05.065
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
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akes a different approach in the way it represents risk preference.

oreover, there exist other theories, such as Lopes’s SP/A (security-

otential/aspiration) model ( Lopes, 1987; Lopes & Oden, 1999 ) and

ahneman and Tversky’s Cumulative Prospect Theory ( Kahneman

 Tversky, 1979; Tversky & Kahneman, 1992 ), that develop with a

ocus on involving probability distortion. The SP/A model is a dual

riterion model that describes the process of choosing between

wo logically and psychologically separate criteria: security-

otential criterion and aspiration criterion. In SP/A theory, a

ecision maker’s choice is based upon an evaluation function of SP

security-potential), which reflects the emotions of fear and hope,

long with an aspiration probability A. SP/A theory is regarded

s a branch of the behavioral decision-making model. Cumulative

rospect Theory is formulated based on a series of laboratory

xperiments that model decision making behavior. Cumulative

rospect Theory uses a reference point to define gains (excesses

f wealth over the reference point) and losses (shortfalls from the

eference point). This theory also defines the utility and dis-utility

unctions alongside the probability distortions of gains and losses. 

Recently, there has been a growing trend of incorporating the

robability distortion into portfolio choice, see e.g. Levy and Levy

2004) and Gomes (2005) , but these models have been limited to

he single-period setting. The reason for that limitation is because

n a continuous time portfolio selection model, many conventional

nd convenient approaches, such as convex optimization, dynamic

rogramming, and stochastic control, cannot be used due to the

onlinear distortion in probabilities. Fortunately, Jin and Zhou

2008) developed a quantile approach to overcome the difficul-

ies arising from the probability distortion. They formulated and

tudied a general continuous-time behavioral portfolio selection

odel under Kahneman and Tversky’s Cumulative Prospect Theory,

eaturing S-shaped utility (value) functions and probability dis-

ortions. Furthermore, a new portfolio choice model is formulated

y He and Zhou (2011) with probability distortion in continuous

ime for both complete and incomplete markets, in which the

uantile function of the terminal cash flow is taken as the decision

ariable. Their formulation covers a wide body of existing and new

odels with law-invariant preference measures. Bi, Zhong, and

hou (2013) formulated and studied a mean-semivariance portfolio

election problem in continuous time when the probability was

istorted by a nonlinear transformation. The optimal solutions are

erived by using the quantile approach, which is formulated by

in and Zhou (2008) and developed in He and Zhou (2011) . Other

orks about behavioral finance theory and behavioral operational

esearch can be found in Jin and Zhou (2013) , Cillo and Delquié

2014) , Brocklesby (2016) , He, Hu, Obłój, and Zhou (2017) , and so

n. 

How do we then deal with the behavioral mean-variance

ortfolio selection problem, including the probability distortion

eature? To our knowledge and according to available literature,

ittle research has formally been done thus far to formulate or

esolve this problem. This paper is the first to present a study of

he behavioral mean-variance portfolio selection problem. 

The main technical challenge of this study is that inclusion

f probability distortion (or nonlinear expectation) destroys the

odels time-consistency, which is necessary for the dynamic

rogramming approach. It also destroys the model’s convexity,

hich is necessary for the convex duality approach. We use the

uantile approach to deal with the challenge. In our model, the

uantile function of the terminal cash flow becomes the decision

ariable. After finding the optimal quantile function, the corre-

ponding optimal terminal cash flow can be recovered. We can

hen obtain the efficient frontier and the efficient strategy, which

s the replicating strategy of the optimal terminal cash flow. 

We divide our behavioral mean-variance portfolio selection

roblem into two subproblems. The first subproblem is to find
he optimal attainable wealth X 

∗, i.e., the random variable that

s the optimal value of all possible x ( T ) generated by admissible

ortfolios. The second subproblem is to find a portfolio π ∗( · ) that

eplicates X 

∗, where X 

∗ is the solution of the first subproblem if it

xists. To solve the first subproblem, we use the quantile approach.

First, we split the first subproblem into positive and negative

art problems. Second, due to the probability distortion involved

n our model, the feasibility of the first subproblem is no longer

efinite. Whether or not a feasible solution can be found for this

roblem is the main question for this part of the subproblem.

hird, due to the probability distortion, the positive part problem

s a constrained non-convex minimization problem. We turn it

nto a convex minimization problem by changing the decision

ariable and performing a series of transformations. Then we use

he Lagrange method to solve the convex minimization problem.

sing the same method, we then solve the negative part problem.

ourth, the original optimal problem will be solved by merging

he positive and negative part problems from step three. Finally,

e study typical cases of probability distortion in the financial

arket, and present their explicit solutions if they exist. Some of

he most used probability distortions are included in our cases,

nd we give their solution schemes if they exist. To solve the

econd subproblem, the optimal trading strategy of the behavioral

ean-variance problem will be expressed by a solution of a

ackward stochastic differential equation. 

The main contribution of this paper has three parts: First, our

xploration into an important research area of modern financial

heory by incorporating the probability distortion feature into

he conventional mean-variance portfolio selection problem while

aking into consideration the behavioral mean-variance portfolio

election problem across continuous time. We use the quantile

pproach to solve our optimization problem. Second, we provide

 solution that addresses the feasibility of our model. In the con-

entional mean-variance portfolio selection model, the feasibility

s trivial. When the probability distortion is added to the model,

he feasibility becomes nontrivial, but remains challenging to

etermine because of the constraints imposed by the probability

istortion. We provide sufficient and necessary conditions needed

o show that there is a feasible solution. Third, we present the

ptimal solution, when it exists, and then exploit both the efficient

rontier and the efficient strategy. Finally, we provide different

nvestment strategies (asset-allocation schemes) for the investors

ith specific subjective probabilities. 

The organization of this paper is as follows: In Section 2 , we

ormulate the behavioral mean-variance portfolio selection prob-

em. Sections 3 and 4 are devoted to solving the first subproblem.

n Section 3 , we derive the optimal terminal wealth via quantiles

y solving the positive and negative part problems separately. In

ection 4 , we give the final solution and some analysis of the

ptimal solution. In Section 5 , we give some specific examples to

how how our result is applied, and in Section 6 , we solve for the

fficient frontier and efficient strategy. Some numerical examples

re given to further illustrate our results in Section 7 . Finally,

ection 8 concludes the paper. 

. Problem formulation 

In this section, we set up the continuous-time financial mar-

et in Section 2.1 and formulate our behavioral mean-variance

ortfolio selection problem in Section 2.2 . Because our problem

s a constrained non-convex minimization problem due to the

robability distortion, the standard approaches, such as the convex

uality and the dynamic programming, fail to apply. Hence, we

urn our problem into a convex minimization problem by changing

he decision variable and performing a series of transformations in

ection 2.3 . Then, we use the Lagrange method to solve the convex
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minimization problem in the upcoming sections. Based on some

analysis and observations, we split the problem formulated in

Section 2.3 into positive and negative part problems, the process

of which is shown in Section 2.4 . Due to the probability distortion

involved in our model, the feasibilities of problems formulated in

Sections 2.3 and 2.4 are no longer trivial. The feasibility of these

problems is the question we tackle in Section 2.5 . 

2.1. The financial market 

Let (�, F , P) be a probability space, with filtration {F t } t≥0 

containing all objects defined in the following. We suppose that

there exists a financial market where m + 1 assets are traded

continuously over a finite time horizon [0, T ]. The risk-free asset’s

price process P 0 ( t ) is subject to the following differential equation {
dP 0 (t) = r(t ) P 0 (t ) dt , t ∈ [0 , T ] , 
P 0 (0) = p 0 , 

where the interest rate r ( · ) is an F t -adapted, scalar-valued

stochastic process with 

∫ T 
0 | r(t) | dt < + ∞ a . s .. 

The other m assets are risky assets (stocks), and their price

processes P i (t) , i = 1 , 2 , . . . , m, satisfy the following stochastic

differential equations {
dP i (t) = P i (t) 

[
b i (t) dt + 

∑ m 

j=1 σi j (t) dW j (t) 
]
, t ∈ [0 , T ] , 

P i (0) = p i , i = 1 , 2 , . . . , m, 

where W (t) := (W 1 (t) , W 2 (t ) , . . . , W m 

(t )) � is a standard {F t } t≥0 -

adapted m -dimensional Brownian motion, with the superscript

� here and after means the transpose of a matrix or a vector.

b i ( t ) ( > r ( t )) and σ ij ( t ), the appreciation rates and the volatility

rates respectively, are scalar-valued, F t -progressively measurable

stochastic processes with ∫ T 

0 

[ 

m ∑ 

i =1 

| b i (t) | + 

m ∑ 

i =1 

m ∑ 

j=1 

σ 2 
i j (t) 

] 

dt < + ∞ a.s.. 

We set the excess rate of return process 

B (t) := ( b 1 (t) − r(t) , ..., b m 

(t) − r(t) ) 
� 
, 

and define the volatility matrix process σ ( t ) := ( σ ij ( t )) m × m 

. This

financial market model has been studied extensively in the lit-

erature; see for example, Jin and Zhou (2008) , He and Zhou

(2011) and Bi et al. (2013) . The basic assumptions imposed on

the market parameters throughout this paper are the same as

Assumption 2.1 in Jin and Zhou (2008) (or Assumption 2.1 in Bi

et al., 2013 ). Then there exists a unique risk-neutral probability

measure Q defined by dQ 
dP 

| F t = ρ(t) , where 

ρ(t) = exp 

{
−
∫ t 

0 

[ 
r(s ) + 

1 

2 

| θ (s ) | 2 
] 

ds −
∫ t 

0 

θ (s ) � dW (s ) 

}
is the pricing kernel or state density price. We denote ρ := ρ( T )

with its cumulative distribution function F ρ ( · ). Note that

0 < ρ < + ∞ a.s. and 0 < E ρ < + ∞ . Moreover, we have the

following assumption for ρ in this paper. 

Assumption 2.1. ρ admits no atom. 

Assumption 2.1 is the same as that in Jin and Zhou (2008) (or

Bi et al., 2013 ). This assumption is not essential, but is imposed to

avoid undue technicality. In particular, the assumption is satisfied

when r ( · ) and θ ( · ) are deterministic with 

∫ T 
0 θ

2 (t) dt � = 0 , in

which case ρ is a non-degenerate lognormal random variable. 

Suppose that the agent is allowed to invest all of his/her

wealth in the financial market, with an initial wealth x 0 > 0 and

an investment horizon [0, T ]. We assume that the trading of shares
akes place in a self-financing fashion, i.e., there is no consump-

ion or income. And there is no transaction cost. Let x ( t ) denote

he agent’s total wealth at time t and πi (t) , i = 1 , 2 , . . . , m, denote

he total market value of the agent’s wealth in the i th stock at

ime t . Then x (t) −∑ m 

i =1 πi (t) is the value of the agent’s wealth in

he risk-free asset. Then x ( t ) satisfies 

x (t) = 

x (t) −∑ m 

i =1 πi (t) 

P 0 ( t) 
dP 0 ( t) + 

m ∑ 

i =1 

πi (t) 

P i (t) 
dP i (t) . 

So x ( · ) satisfies 

dx (t) = 

[
r(t ) x (t ) + B (t ) � π(t ) 

]
dt + π(t ) � σ (t ) dW (t ) , t ∈ [0 , T ] ,

x (0) = x 0 , 

(2.1)

here π(t) := (π1 (t) , π2 (t ) , . . . , πm 

(t )) � . The process π ( · ) is said

o be an admissible portfolio if it is F t -progressively measurable

ith 

 T 

0 

| σ (t) � π(t) | 2 dt < + ∞ and 

∫ T 

0 

| B (t) � π(t) | dt < + ∞ , a.s.. 

.2. The behavioral mean-variance problem 

In this subsection, we introduce the behavioral mean-variance

roblem. First of all, we define the probability distortion functions

s follows. 

efinition 2.1. Let w + (·) and w −(·) : [0 , 1] → [0 , 1] be the prob-

bility distortion functions (or cumulative weighting functions),

epresenting the distortions in probability for the gains and losses

espectively. The probability distortion function describes the

ubjective inflation or deflation of the true probability. Assume

hat w ±(·) are generally non-linear, strictly increasing and differ-

ntiable across (0,1), where w ±(0) = 0 and w ±(1) = 1 . Thus the

istortion preserves the order of the probabilities, and there is no

istortion on sure events. 

For a random variable X with cumulative distribution function

 X ( x ), its behavioral mean is defined by 

 

 (X ) : = ̃

 E + (X 

+ ) −˜ E −(X 

−) 

= 

∫ + ∞ 

0 

w + (P (Y + > y )) dy −
∫ + ∞ 

0 

w −(P (Y − > y )) dy 

= 

∫ + ∞ 

0 

xd[ −w + (1 − F X (x ))] + 

∫ 0 

−∞ 

xd[ w −(F X (x ))] , 

here the signs X + and X −, here and after, denote the positive

nd negative part of X , respectively. For any random variable X

atisfied ̃

 E [ X − k ] = 0 , its behavioral variance is defined by 

 

 (X ) : = ̃

 E + 
{

[(X − k ) + ] 2 
}

+ ̃

 E −
{

[(X − k ) −] 2 
}

= 

∫ + ∞ 

k 

(x − k ) 2 d[ −w + (1 − F X (x ))] 

+ 

∫ k 

−∞ 

(x − k ) 2 d[ w −(F X (x ))] 

Note that if we put w ±(z) = z, the behavioral mean and

ariance of X return to the conventional mean and variance of X . 

We designate L 

2 
F (0 , T ; R 

m ) as the set of all R 

m -valued, mea-

urable stochastic processes f (·) = { f (t) : 0 ≤ t ≤ T } , which is

dapted to {F t } t≥0 such that E 

∫ T 
0 | f (t) | 2 dt < + ∞ . We denote

y L 

2 
F T (�; R 

m ) the set of all R 

m -valued, F T -measurable random

ariables X such that E | X| 2 < + ∞ . 
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The problem we consider in this paper is 

in 

˜ V [ x (T )] = ̃

 E + 
{

[(x (T ) − k ) + ] 2 
}

+ ̃

 E −
{

[(x (T ) − k ) −] 2 
}

ubject to 

{ ˜ E [ x (T ) − k ] = 0 

π(·) ∈ L 

2 
F (0 , T ; R 

m ) 
(x (·) , π(·)) satisfy equation (2 . 1) , 

(2.2) 

here k stands for the expected terminal wealth target, and
 

 [ x (T )] is the behavioral variance of x ( T ). 

ssumption 2.2. x 0 ≤ k E (ρ) . 

Assumption 2.2 is the same as that in Jin and Zhou (2008) (or

i et al., 2013 ). The financial meaning of this assumption is that

he investor expects higher terminal wealth k by investing in the

tock market than the terminal wealth 

x 0 
E (ρ) 

of only investing in

he risk-free bond market. This assumption also implies that the

nvestor has to take risk to meet his investment target. Clearly,

his is a reasonable assumption. 

In order to solve problem (2.2) , we introduce a proposition,

aken from Karoui, Peng, and Quenez (1997) that will significantly

implify our problem. 

roposition 2.1. For any ξ ∈ L 

2 
F T (�; R ) , the following backward

tochastic differential equation 

dx (t) = 

[
r(t ) x (t ) + θ (t ) � Z(t ) 

]
d t + Z(t) � d W (t) , t ∈ [0 , T ] , 

x (T ) = ξ , 

(2.3) 

dmits a unique solution ( x ( · ), Z ( · )) and x ( t ) is given by 

 (t) = ρ(t) E [ ρ(T ) ξ |F t ] , ∀ t ∈ [0 , T ] , a.s.. (2.4)

In view of Proposition 2.1 , we need only solve the following

wo subproblems. The first subproblem is to find the optimal

ttainable wealth X 

∗, i.e., the random variable that is the optimal

alue of all possible x ( T ) generated by admissible portfolios. This

ubproblem can be represented by 

in 

˜ V [ X] = ̃

 E + 
{

[(X − k ) + ] 2 
}

+ ̃

 E −
{

[(X − k ) −] 2 
}

ubject to 

⎧ ⎨ ⎩ 

˜ E [ X − k ] = 0 

E [ ρX] = x 0 
X ∈ L 

2 
F (0 , T ;R 

m ) , a.s.. 

(2.5) 

he second subproblem is to find a portfolio π ( · ) that replicates

 

∗, where X 

∗ is the solution of the first subproblem, and ( x ( · ),

( · )) satisfy 

dx (t) = 

[
r(t ) x (t ) + B (t ) � π(t ) 

]
dt + π(t ) � σ (t ) dW (t ) , t ∈ [0 , T ] , 

x (T ) = X ∗. 

(2.6) 

n the following, we solve for both subproblems. 

.3. Problem formulation via quantile 

For a convex optimization problem, the method of Lagrange

ultipliers is a powerful tool for finding the maximum and

inimum of a function that is subject to equality constraints. By

ntroducing Lagrange multipliers, the constraint conditions can

e eliminated. But problem (2.5) is not a convex optimization

roblem, so the usual Lagrange multiplier method cannot be

pplied directly. In this subsection, we reformulate this problem

ia the quantile approach by changing the decision variable and

erforming a series of transformations. This procedure turns the

roblem into a convex minimization problem, which will allow

s to use the Lagrange method to find a solution to the convex

inimization problem. This process will be shown in an upcoming
ection. To start the process, set Y := X − k, so that the first

ubproblem (2.5) becomes 

in 

˜ V [ Y ] = ̃

 E + 
[
(Y + ) 2 

]
+ ̃

 E −
[
(Y −) 2 

]
ubject to 

{ ˜ E Y = 0 

E [ ρY ] = y 0 := x 0 − k E (ρ) ≤ 0 

Y ∈ L 

2 
F (0 , T ; R 

m ) . 
(2.7) 

Note that if x 0 = k E (ρ) , and y 0 = 0 , the optimal solution for

roblem (2.7) is Y ≡ 0. Because of this, we only consider the case

f y 0 < 0 in the following procedures. 

We change the decision variable from Y to its quantile function,

nd then turn the above problem into a convex problem through

ome transformations. For any cumulative distribution functions

 ( · ), we denote its left-inverse function with F −1 (·) , i.e., 

 

−1 
Y (t) = inf { x ∈ R : F Y (x ) ≥ t} = sup { x ∈ R : F Y (x ) < t} , t ∈ [0 , 1] .

Next, we give the following two crucial lemmas, without proof,

hat we take from (Jin & Zhou, 2008, Theorem B.1 and Theo-

em C.1) and Bi et al. (2013) ,(Lemma 3.1 and Lemma 3.2). 

emma 2.1. Under Assumption 2.1 , we have E 

[
ρF −1 

Y 
(1 − F ρ (ρ)) 

]
≤

 [ ρY ] , where F Y ( · ) is the cumulative distribution function of Y. Fur-

hermore, if E [ ρF −1 
Y 

(1 − F ρ (ρ))] < ∞ , then the inequality becomes

quality if and only if Y = F −1 
Y 

(1 − F ρ (ρ)) . 

emma 2.2. If problem (2.7) admits an optimal solution Y ∗ whose

istribution function is F Y ( · ), then Y ∗ = F −1 
Y 

(1 − F ρ (ρ)) , a.s.. 

emark 2.1. Lemma 2.2 shows that an optimal solution Y ∗ of

roblem (2.7) must be in the form G (Z ρ ) := F −1 
Y 

(1 − F ρ (ρ)) , where

 (·) := F −1 
Y 

(·) is the quantile function of Y ∗ and Z ρ := 1 − F ρ (ρ) .

ecause ρ is atom-less ( Assumption 2.1 ), we have Z ρ ∼ U (0, 1),

.e., Z ρ ∼ U (0, 1) is a particular uniform random variable. In other

ords, to find an optimal solution Y ∗ (the optimal terminal

ealth) of problem (2.7) , we need only to search among the

andom variables of the form G (·) ∈ G where G is the set of all

he following quantile functions F −1 (·) , i.e., 

G = { G (·) : [0 , 1] → R , non-decreasing, left-continuous, 

 (0) = −∞ , G (1) := G (1 

−) } . 
In addition, we define 

G + : = { G (·) : [0 , 1] → R , non-decreasing, left-continuous, 

 (z) ≥ 0 , z ∈ [0 , 1] } , 
G − : = { G (·) : [0 , 1] → R , non-increasing, left-continuous, 

 (z) ≥ 0 , z ∈ [0 , 1] } . 
Letting z = F Y (x ) , we have the following transformation occurs 

 

 (Y ) = E 

[
G (Z ρ ) + w 

′ 
+ (1 − Z ρ ) 

]
− E 

[
G (Z ρ ) −w 

′ 
−(Z ρ ) 

]
= 

∫ 1 

z 1 

G (z) w 

′ 
+ (1 − z) dz + 

∫ z 1 

0 

G (z) w 

′ 
−(z) dz, 

 

 (Y ) = ̃

 E + 
[
Y 2 + 
]

+ ̃

 E −
[
Y 2 −
]

= E 

{ [
G (Z ρ ) + 

]2 
w 

′ 
+ (1 − Z ρ ) 

} 
+ E 

{ [
G (Z ρ ) −

]2 
w 

′ 
−(Z ρ ) 

} 
= 

∫ 1 

z 1 

G (z) 2 w 

′ 
+ (1 − z) dz + 

∫ z 1 

0 

G (z) 2 w 

′ 
−(z) dz, 

here z 1 = sup { z : G (z) < 0 } , and the budget constraint is 

 

[
F −1 
ρ (1 − Z ρ ) G (Z ρ ) 

]
= y 0 . 

 

′ (·) , here and after, represents the derivative of the function

 (·) . Then we reformulate our behavioral mean-variance problem

ia quantiles as follows 

in E 

{ [
G (Z ρ ) + 

]2 
w 

′ 
+ (1 − Z ρ ) 

} 
+ E 

{
[ G (Z ρ ) −] 2 w 

′ 
−(Z ρ ) 

}
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subject to 

⎧ ⎨ ⎩ 

E 

[
G (Z ρ ) + w 

′ 
+ (1 − Z ρ ) 

]
− E 

[
G (Z ρ ) −w 

′ 
−(Z ρ ) 

]
= 0 

E 

[
F −1 
ρ (1 − Z ρ ) G (Z ρ ) 

]
= y 0 

G (·) ∈ G . 

(2.8)

For convenience, we call problem (2.8) the ” quantile problem” in

the following sections. The integral version of problem (2.8) is 

min 

∫ 1 

z 1 

G (z) 2 w 

′ 
+ (1 − z) dz + 

∫ z 1 

0 

G (z) 2 w 

′ 
−(z) dz 

subject to 

⎧ ⎨ ⎩ 

∫ 1 
z 1 

G (z) w 

′ 
+ (1 − z) dz + 

∫ z 1 
0 G (z) w 

′ 
−(z) dz = 0 ∫ 1 

0 F −1 
ρ (1 − z) G (z) dz = y 0 

G (·) ∈ G , z 1 = sup { z : G (z) < 0 } . 
Once we have the optimal solution for problem (2.8) , G 

∗( · ),

the optimal solution for (2.7) (the optimal terminal wealth) can be

recovered by Y ∗ = G 

∗(1 − F ρ (ρ)) . Then, the optimal portfolio can

be found using Proposition 2.1 . Next, we consider problem (2.8) . 

2.4. Splitting into positive part and negative part 

The key idea developed in this paper is taken from Jin and Zhou

(2008) which involves splitting the quantile problem (2.8) into

positive and negative part problems, and then appropriately merg-

ing them. This idea is based on the following observation: If G ( z )

is a feasible solution of problem (2.8) , then we can split it into

G (·) + and G (·) −. We prove the above observation in Section 2.5 .

Furthermore, if G 

∗( · ) is optimal for problem (2.8) , (G 

∗(·)) + and

(G 

∗(·)) − are respectively optimal for the positive and the negative

part problems, with some suitable parameters. We prove this in

Theorem 2.1 which is found in this subsection. 

In the following steps, we split the quantile problem (2.8) into

the positive and negative part problems from z 1 . The behavioral

terminal mean and initial price of the positive part are a + > 0

and y + > 0 , respectively. The behavioral terminal mean and initial

price of the negative part are a + and y + − y 0 , respectively. An

optimal solution for (2.8) should induce the best (z 1 , a + , y + ) . We

now carry out this idea in the following two steps. 

Step 1 : In this step, we consider the positive and negative

part problems respectively. 

Positive part problem 

min E 

[
G + (Z ρ ) 2 w 

′ 
+ (1 − Z ρ ) 

]
subject to 

⎧ ⎨ ⎩ 

E 

[
G + (Z ρ ) w 

′ 
+ (1 − Z ρ ) 

]
= a + 

E 

[
G + (Z ρ ) F −1 

ρ (1 − Z ρ ) 
]

= y + 
G + (·) ∈ G + , and G + (z) = 0 , z ∈ (0 , z 1 ) , 

(2.9)

where a + > 0 , y + > 0 . The optimal value of the positive part is

denoted by v + (z 1 , a + , y + ) . 
Negative part problem 

min E 

[
G −(Z ρ ) 2 w 

′ 
−(Z ρ ) 

]
subject to 

⎧ ⎨ ⎩ 

E 

[
G −(Z ρ ) w 

′ 
−(Z ρ ) 

]
= a + 

E 

[
G −(Z ρ ) F −1 

ρ (1 − Z ρ ) 
]

= y + − y 0 
G −(·) ∈ G −, and G −(z) = 0 , z ∈ (z 1 , 1) . 

(2.10)

The optimal value of the negative part is denoted by v −(z 1 , a + , y + ) .
The integral version of the positive part is 

min 

∫ 1 

z 1 

G + (z) 2 w 

′ 
+ (1 − z) dz 

subject to 

⎧ ⎨ ⎩ 

∫ 1 
z 1 

G + (z) w 

′ 
+ (1 − z) dz = a + ∫ 1 

z 1 
F −1 
ρ (1 − z) G + (z) dz = y + 

G + (·) ∈ G + . 
(2.11)

The integral version of the negative part is 

min 

∫ z 1 

G −(z) 2 w 

′ 
−(z) dz 
0 
ubject to 

{ 

∫ z 1 
0 G −(z) w 

′ 
−(z) dz = a + ∫ z 1 

0 F −1 
ρ (1 − z) G −(z) dz = y + − y 0 

G −(·) ∈ G −. 

(2.12)

Step 2 : In this step, we merge the positive and the negative

art problems, and solve for the merged problem. 

To start, the resulting problem we get once the positive and

egative part problems are merged is as follows, 

in v + (z 1 , a + , y + ) + v −(z 1 , a + , y + ) 

ubject to 

{ 

z 1 ∈ (0 , 1) , 
a + > 0 , 

y + > 0 . 

(2.13)

The following theorem shows that our problem (2.8) is equiv-

lent to the set of problems (2.9), (2.10) and (2.13) . Moreover,

he solution of (2.8) can be obtained via the solutions to (2.9),

2.10) and (2.13) . 

heorem 2.1. Given G 

∗( · ), define 

 

∗
1 = sup { z : G 

∗(z) < 0 } , a ∗+ = E { [ G (Z ρ ) + ] 2 w 

′ 
+ (1 − Z ρ ) } 

nd 

 

∗
+ = E { [ G 

∗(Z ρ )] + F −1 
ρ (1 − Z ρ ) } . 

hen G 

∗( · ) is optimal for problem (2.8) if and only if the parameters

(z ∗
1 
, a ∗+ , y ∗+ ) are optimal for problem (2.13) , and (G 

∗(·)) + as well as

(G 

∗(·)) − are respectively optimal for problem (2.9) and (2.10) with

arameters (z ∗1 , a 
∗+ , y ∗+ ) . 

roof. We first prove the ” if” part. Assume (G 

∗(·)) + and (G 

∗(·)) −
re respectively optimal for problems (2.9) and (2.10) with the

arameters (z ∗
1 
, a ∗+ , y ∗+ ) and (z ∗

1 
, a ∗+ , y ∗+ ) are optimal for problem

2.13) . 

For any feasible solution G ( · ) of problem (2.8) , de-

ne a + := E [ G (Z ρ ) + w 

′ + (1 − Z ρ )] , y + := E [ F −1 
ρ (1 − Z ρ ) G (Z ρ ) + ] ,

nd z 1 := sup { z : G (z) < 0 } . Therefore, we have ˜ V (G (·) + ) ≥
 + (z 1 , a + , y + ) and ˜ V (G (·) −) ≥ v −(z 1 , a + , y + ) . So 

 

 (G (·)) = ̃

 V (G (·) + ) + ̃

 V (G (·) −) 

≥ v + (z 1 , a + , y + ) + v −(z 1 , a + , y + ) 

≥ v + (z ∗1 , a 
∗
+ , y 

∗
+ ) + v −(z ∗1 , a 

∗
+ , y 

∗
+ ) = ̃

 V (G 

∗(·)) , 

hich means G 

∗( · ) is optimal for (2.8) . 

For the ” only if” part, let G 

∗( · ) be optimal for (2.8) . It is easy

o see ˜ V (G 

∗(·) + ) ≥ v + (z ∗
1 
, a ∗+ , y ∗+ ) and 

˜ V (G 

∗(·) −) ≥ v −(z ∗
1 
, a ∗+ , y ∗+ ) .

f the former holds true, then there exists a G 1 ( · ) which

s feasible for (2.9) with parameters (z ∗
1 
, a ∗+ , y ∗+ ) such that

 

 (G 1 (·)) < ̃

 V (G 

∗(·) + ) . Then Ḡ (·) := G 1 (·) + + G 

∗(·) − is feasible

or (2.8) and 

˜ V ( ̄G (·)) < ̃

 V (G 

∗(·)) , which contradicts the optimality

f G 

∗( · ). So G 

∗(·) + is optimal for (2.9) . Similarly we can prove that

 

∗(·) − is optimal for (2.10) . Therefore ˜ V (G 

∗(·) + ) = v + (z ∗
1 
, a ∗+ , y ∗+ )

nd ̃

 V (G 

∗(·) −) = v −(z ∗
1 
, a ∗+ , y ∗+ ) . 

Next we show that 

 + (z 1 , a + , y + ) + v −(z 1 , a + , y + ) ≥ v + (z ∗1 , a 
∗
+ , y 

∗
+ ) 

+ v −(z ∗1 , a 
∗
+ , y 

∗
+ ) = ̃

 V (G 

∗(·)) 

or any feasible pair (z 1 , a + , y + ) of problem (2.13) . 

For any a + > 0 , y + > 0 , both (2.9) and (2.10) with the pa-

ameters (z 1 , a + , y + ) have non-empty feasible regions. Hence

or any ε > 0 there exist G + (·) and G −(·) , feasible for (2.9) and

2.10) , respectively, such that ˜ V (G + (·)) < v + (z 1 , a + , y + ) + ε and
 

 (G −(·)) < v −(z 1 , a + , y + ) + ε. We then set G (·) := G + (·) − G −(·) ,
hich is feasible for (2.8) , and we get 
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is empty. 
 + (z 1 , a + , y + ) + v −(z 1 , a + , y + ) > ̃

 V (G + (·)) 
+ ̃

 V (G −(·)) − 2 ε ≥ ˜ V (G 

∗(·)) + 2 ε. 

t this point, the proof is completed. �

.5. The feasibility of problems (2.8), (2.9) and (2.10) 

Owing to the probability distortion involved in our model,

he feasibilities of the quantile problem (2.8) , the positive part

roblem (2.9) and the negative part problem (2.10) are no longer

rivial. Determining the feasibility of solutions for both part

roblems is the focus of this section. 

roposition 2.2. The feasibility of the quantile problem (2.8) is

quivalent to the existence of parameters (z 1 , a + , y + ) for which the

ositive part problem (2.9) and negative part problem (2.10) are

easible. 

roof. We first assume that there exists a feasible solution G ( z ) of

roblem (2.8) , where G ( z ) satisfies 

E 

[
G (Z ρ ) + w 

′ 
+ (1 − Z ρ ) 

]
− E 

[
G (Z ρ ) −w 

′ 
−(Z ρ ) 

]
= 0 

E 

[
F −1 
ρ (1 − Z ρ ) G 

+ (Z ρ ) 
]

− E [ F −1 
ρ (1 − Z ρ ) G 

−(Z ρ )] = y 0 < 0 . 

f E 

[
G (Z ρ ) + w 

′ + (1 − Z ρ ) 
]

= 0 , then E 

[
G (Z ρ ) −w 

′ −(Z ρ ) 
]

= 0 . Thus,

 (z) + = G (z) − = 0 , a.s., because of w 

′ + (1 − z) > 0 and w 

′ −(z) > 0 .

onsequently, 

 

[
F −1 
ρ (1 − Z ρ ) G (Z ρ ) + 

]
− E 

[
F −1 
ρ (1 − Z ρ ) G (Z ρ ) −

]
= 0 . 

o, we have E 

[
G (Z ρ ) + w 

′ + (1 − Z ρ ) 
]

> 0 . Similarly, we can obtain

 

[
F −1 
ρ (1 − Z ρ ) G (Z ρ ) + 

]
> 0 . Set 

z 1 = sup { z : G (z) < 0 } , 
a + := E 

[
G (Z ρ ) + w 

′ 
+ (1 − Z ρ ) 

]
, 

y + := E 

[
F −1 
ρ (1 − Z ρ ) G (Z ρ ) + 

]
, 

hen G (·) + and G (·) − are feasible for problem (2.9) and problem

2.10) , respectively, with the parameters (z 1 , a + , y + ) . 
Conversely, if G + (·) and G −(·) are feasible for problem (2.9) and

roblem (2.10) , respectively, set G (·) + := G + (·) and G (·) − := G −(·) ,
hen G (·) := G (·) + − G (·) − is feasible for problem (2.8) . Thus, we

et the result. �

Next, we solve for the feasibility of the positive part problem.

nce that is done, the feasibility of the negative part problem can

e derived as well. Define 

 + (z) := 

F −1 
ρ (1 − z) 

w 

′ + ( 1 − z) 
, M −( z) := 

F −1 
ρ ( 1 − z) 

w 

′ −( z) 
, 

 

z 1 + (ρ) : = 

∫ 1 
z 1 

F −1 
ρ (1 − z) dz ∫ 1 

z 1 
w 

′ + (1 − z) dz 
= 

∫ 1 
z 1 

M + (z) w 

′ 
+ (1 − z) dz ∫ 1 

z 1 
w 

′ + (1 − z) dz 

= 

∫ 1 
z 1 

M + (z) d[ −w + (1 − z)] ∫ 1 
z 1 

d[ −w + (1 − z)] 
, 

 

z 1 − (ρ) : = 

∫ z 1 
0 F −1 

ρ (1 − z) dz ∫ z 1 
0 w 

′ −(z) dz 
= 

∫ z 1 
0 M −(z) w 

′ 
−(z) dz ∫ z 1 

0 w 

′ −(z) dz 

nd 

 : = inf 
G + ∈ G + 

∫ 1 
z 1 

G + (z) M + (z) d[ −w + (1 − z)] ∫ 1 
z 1 

G + (z) d[ −w + (1 − z)] 
, 

 : = sup 

G + ∈ G + 

∫ 1 
z 1 

G + (z) M + (z) d[ −w + (1 − z)] ∫ 1 
z 1 

G + (z) d[ −w + (1 − z)] 
. 
t is easy to prove that b ≤ E 

z 1 + (ρ) ≤ b . In fact, set G + (z) ≡ c, then 

 

z 1 + (ρ) = 

∫ 1 
z 1 

cM + (z) d[ −w + (1 − z)] ∫ 1 
z 1 

cd[ −w + ( 1 − z)] 
∈ [ b , b ] . 

roposition 2.3. If b < 

y + 
a + < b , there exists a feasible solution to

roblem (2.11) . Conversely, if problem (2.11) has a feasible solution,

hen b ≤ y + 
a + ≤ b . 

roof. For the first part of the proposition, if b < 

y + 
a + < b , there

xists G 

1 + (z) ∈ G + , G 

2 + (z) ∈ G + , such that ∫ 1 
z 1 

G 

1 
+ (z) M + (z) d[ −w + (1 − z)] ∫ 1 
z 1 

G 

1 + (z) d[ −w + (1 − z)] 
< 

y + 
a + 

< 

∫ 1 
z 1 

G 

2 
+ (z) M + (z) d[ −w + (1 − z)] ∫ 1 
z 1 

G 

2 + (z) d[ −w + (1 − z)] 
. 

efine 

f (λ) = 

∫ 1 
z 1 

[
λG 

1 
+ (z) + (1 − λ) G 

2 
+ (z) 

]
M + ( z) d[ −w + ( 1 − z)] ∫ 1 

z 1 

[
λG 

1 + ( z) + (1 − λ) G 

2 + (z) 
]
d[ −w + ( 1 − z)] 

, 

hen f (1) < 

y + 
a + < f (0) , and f ( λ) is continuous, so there exists

0 ∈ (0, 1), such that 

y + 
a + 

= f (λ0 ) = 

∫ 1 
z 1 

[
λ0 G 

1 
+ (z) + (1 − λ0 ) G 

2 
+ (z) 

]
M + (z) d[ −w + (1 − z)] ∫ 1 

z 1 

[
λ0 G 

1 + (z) + (1 − λ0 ) G 

2 + (z) 
]
d[ −w + (1 − z)] 

. 

et G 

0 
+ (z) = λ0 G 

1 
+ (z) + (1 − λ0 ) G 

2 
+ (z) , and G 

∗
+ (z) =

a + G 0 + (z) ∫ 1 
z 1 

G 0 + (z) d[ −w + (1 −z)] 
> 0 , then 

 1 

z 1 

G 

∗
+ (z) d[ −w + (1 − z)] = a + , 

nd ∫ 1 

z 1 

G 

∗
+ (z) M + (z) d[ −w + (1 − z)] 

= 

a + 
∫ 1 

z 1 
G 

0 
+ (z) M + (z) d[ −w + (1 − z)] ∫ 1 

z 1 
G 

0 + (z) d[ −w + (1 − z)] 
= a + 

y + 
a + 

= y + , 

hich shows that G 

∗
+ (z) is feasible. 

Conversely, if a feasible solution, G + (z) , exists, it is obvious

hat 

y + 
a + 

= 

∫ 1 
z 1 

G + (z) M + (z) d[ −w + (1 − z)] ∫ 1 
z 1 

G + (z) d[ −w + (1 − z)] 
∈ [ b , b ] . 

his completes the proof. �

Next we give some more explicit conditions for the feasibility

f problem (2.11) in the following three propositions. We assume
y + 
a + ∈ ( b , b ) in the following. 

roposition 2.4. 

(1) If there exists a z ∈ ( z 1 , 1) such that ∫ 1 

z 

[ M + (x ) − E 

z 1 + (ρ)] d[ −w + (1 − x )] < 0 , 

we have b < E 

z 1 + (ρ) , and then problem (2.11) has a feasible

solution for y + 
a + ∈ ( b , E 

z 1 + (ρ)) . 

(2) Otherwise, if ∫ 1 

z 

[ M + (x ) − E 

z 1 + (ρ)] d[ −w + (1 − x )] ≥ 0 

for any z ∈ ( z 1 , 1), we have b = E 

z 1 + (ρ) . Then problem (2.11) has

no feasible solution for y + 
a + ∈ ( b , E 

z 1 + (ρ)) , because ( b , E 

z 1 + (ρ))
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Proof. The proof of this proposition uses a similar argument to

that in Theorem 3.1 in Bi et al. (2013) , so we omit it here. �

Proposition 2.5. 

(1) If there exists a z ∈ ( z 1 , 1) such that ∫ 1 

z 

[ M + (x ) − E 

z 1 + (ρ)] d[ −w + (1 − x )] > 0 , 

we have E 

z 1 + (ρ) < b , and then problem (2.11) has a feasible

solution for y + 
a + ∈ (E 

z 1 + (ρ) , b ) . 

(2) Otherwise, if ∫ 1 

z 

[ M + (x ) − E 

z 1 + (ρ)] d[ −w + (1 − x )] ≤ 0 

for any z ∈ ( z 1 , 1), we have E 

z 1 + (ρ) = b . Problem (2.11) has no

feasible solution for y + 
a + ∈ (E 

z 1 + (ρ) , b ) , because (E 

z 1 + (ρ) , b ) is

empty. 

Proposition 2.6. If y + 
a + = E 

z 1 + (ρ) , there exists a feasible solution for

problem (2.11) . 

Proof. When 

y + 
a + = E 

z 1 + (ρ) , one can directly verify that

G + (·) = 

a + ∫ 1 
z 1 

w 

′ + (1 −z) dz 
is a feasible solution of problem (2.11) . �

Remark 2.2. In Proposition 2.4 (1), we cannot guarantee the exis-

tence of a feasible solution for y + 
a + ∈ (E 

z 1 + (ρ) , b ) . Actually, E 

z 1 + (ρ)

maybe equal to b . For example, if ∫ 1 

z 

[ M + (x ) − E 

z 1 + (ρ)] d[ −w + (1 − x )] ≤ 0 

for any z ∈ ( z 1 , 1), we have E 

z 1 + (ρ) = b , then (E 

z 1 + (ρ) , b ) will be

empty. The details can be found in Proposition 2.5 (2). 

Remark 2.3. In Proposition 2.5 (1), we cannot guarantee the exis-

tence of a feasible solution for y + 
a + ∈ ( b , E 

z 1 + (ρ)) . Actually, E 

z 1 + (ρ)

maybe equal to b . For example, if ∫ 1 

z 

[ M + (x ) − E 

z 1 + (ρ)] d[ −w + (1 − x )] ≥ 0 

for any z ∈ ( z 1 , 1), we have E 

z 1 + (ρ) = b , then ( b , E 

z 1 + (ρ)) will be

empty. The details can be found in Proposition 2.4 (2). 

Remark 2.4. From Propositions 2.4 and 2.5 , we can see that, if

there exist z̄ , ̃  z ∈ (z 1 , 1) such that ∫ 1 

z̄ 

[ M + (x ) − E 

z 1 + (ρ)] d[ −w + (1 − x )] > 0 , 

and ∫ 1 

˜ z 

[ M + (x ) − E 

z 1 + (ρ)] d[ −w + (1 − x )] < 0 , 

then we have b < E + (ρ) < b . So there exists a feasible solution for

problem (2.11) for both 

y + 
a + ∈ ( b , E 

z 1 + (ρ)) and 

y + 
a + ∈ (E 

z 1 + (ρ) , b ) . 

3. Optimal solution for the positive part problem and negative 

part problem 

The next two sections are devoted to solving for the optimal

attainable wealth, which is the focus of the first subproblem

and problem (2.5) . In this section, we solve the problems of the

positive and negative parts in Step 1. In Section 4 , we talk about

problem (2.13) from Step 2, in which we merged the positive and

the negative part problems. 

In Section 3.1 , in order to eliminate the constraint conditions

in the positive and negative part problems, we introduce the

Lagrange multipliers (λ+ , μ+ ) , (λ−, μ−) into both problems. For
he convenience of calculation, we solve an auxiliary problem in

ection 3.2 . In Sections 3.3 and 3.4 , we study the optimal solution

or the positive and negative part problems in four typical but

ufficiently general cases of probability distortions. 

.1. Problem transformation 

Before considering the positive and negative part problems, we

resent the following theorem. 

heorem 3.1. Assume that z 1 and a + are fixed. 

(i) Under the condition of Proposition 2.4 (1), the value func-

tion of the positive part, problem (2.9) , is decreasing for

y + ∈ (a + b , a + E 

z 1 + (ρ)) . Under the condition of Proposition

2.5 (1), the value function of the positive part, problem (2.9) , is

increasing for y + ∈ (a + E 

z 1 + (ρ) , a + b ) . 
(ii) If the feasible solution exists for the negative part, problem

(2.10) , the value function of problem (2.10) is decreasing for

y + − y 0 < a + E 

z 1 − (ρ) , and increasing for y + − y 0 > a + E 

z 1 − (ρ) . 

roof. If the feasible solution for problem (2.9) exists (see the

esults in Section 2.5 ), then the existence of an optimal solution

or problem (2.9) is easily apparent. We show the optimal solution

n Sections 3.3–3.4. 

(i) Set a + b < ȳ + < ˆ y + < a + E 

z 1 + (ρ) , we shall prove that

v + (z 1 , a + , ̂  y + ) < v + (z 1 , a + , ̄y + ) , where v + (z 1 , a + , ̂  y + ) and

v + (z 1 , a + , ̄y + ) are the optimal values of problem (2.9) that

correspond to ˆ y + and ȳ + respectively. Let Ḡ + (·) denote

the optimal solution for (2.9) when the parameters are

(z 1 , a + , ̄y + ) . Recall that the optimal solution Ḡ + (·) ∈ G + for

(2.9) is the positive part of the optimal quantile function,

G 

∗( · ), for problem (2.8) . After solving problem (2.8) with

the optimal solution G 

∗( · ), the optimal solution (i.e., the

optimal terminal wealth) for (2.7) can be recovered by

Y ∗ = G 

∗(1 − F ρ (ρ)) . Then, the optimal portfolio can be

found by Proposition 2.1 . 

Construct 

ˆ G + (·) : = 

ˆ y + − a + E 

z 1 + (ρ) 

ȳ + − a + E 

z 1 + (ρ) 

[ 

Ḡ + (·) − a + ∫ 1 
z 1 

w 

′ + (1 − z) dz 

] 

+ 

a + ∫ 1 
z 1 

w 

′ + (1 − z) dz 
. 

It is easy to verify that ˆ G + (·) satisfies all three of the condi-

tions in problem (2.9) when the parameters are (z 1 , a + , ̂  y + ) .
Because it satisfies those conditions, ˆ G + (·) is a feasible

solution for (2.9) when the parameters are (z 1 , a + , ̂  y + )
and v + (z 1 , a + , ̂  y + ) < ̃

 V ( ̂  G + (·)) < ̃

 V ( ̄G + (·)) = v + (z 1 , a + , ̄y + ) ,
where ˜ V (·) is the behavioral variance. Thus, we get our

result. The result for y + ∈ (a + E 

z 1 + (ρ) , a + b ) can be similarly

derived. 

(ii) Using a similar analysis as to that used in (i), we can solve

for (ii). �

From the above theorem, we know that for fixed z 1 and a + , if

 + ≤ min { a + E 

z 1 + (ρ) , y 0 + a + E 

z 1 − (ρ) } , then both v + (z 1 , a + , y + ) and

 −(z 1 , a + , y + ) are decreasing for y + , and the optimal value for

roblem (2.13) will be attained at y + = min { a + E 

z 1 + (ρ) , y 0 +
 + E 

z 1 − (ρ) } . On the other hand, if y + ≥ max { a + E 

z 1 + (ρ) , y 0 +
 + E 

z 1 − (ρ) } , then both v + (z 1 , a + , y + ) and v −(z 1 , a + , y + ) are in-

reasing for y + , and the optimal value for problem (2.13) will be

ttained at y + = max { a + E 

z 1 + (ρ) , y 0 + a + E 

z 1 − (ρ) } . So next, we only

eed to consider the parameter interval 

in { a + E 

z 1 + (ρ) , y 0 + a + E 

z 1 − (ρ) } ≤ y + ≤ max { a + E 

z 1 + (ρ) , y 0 + a + E 

z 1 − (ρ) } . 
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Fig. 1. f ( z ) and G ( z ) in Lemma 3.1 (i). 

z

(z
0
,f(z

0
))

G
1
(z)

G
2
(z)

f(z)

Fig. 2. f ( z ) and G ( z ) in Lemma 3.1 (ii). 
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Fig. 3. f ( z ) and G ( z ) in Lemma 3.1 (iii). 
Note that the positive part, problem (2.11) , and the negative

art, problem (2.12) , are convex in G ( · ), so we can remove the

onstraints of both problems by introducing Lagrange multi-

liers (λ+ , μ+ ) and (λ−, μ−) , and then consider the following

roblems, 

min 

G + ∈ G + 

∫ 1 

z 1 

G + (z) 2 w 

′ 
+ (1 − z) dz − 2 λ+ 

[∫ 1 

z 1 

G + (z) w 

′ 
+ (1 − z) dz − a + 

]
+2 μ+ 

[∫ 1 

z 1 

G + (z) F −1 
ρ (1 − z) dz − y + 

]
= min 

G + ∈ G + 

∫ 1 

z 1 

[ G + (z) − (λ+ − μ+ M + (z)) ] 
2 
w 

′ 
+ (1 − z) dz 

−
∫ 1 

z 1 

(λ+ − μ+ M + (z)) 2 w 

′ 
+ (1 − z) dz + 2 λ+ a + − 2 μ+ y + , (3.1) 

nd 

min 

G −∈ G −

∫ z 1 

0 

G −(z) 2 w 

′ 
−(z) dz − 2 λ−

[∫ z 1 

0 

G −(z) w 

′ 
−(z) dz − a + 

]
+ 2 μ−

[∫ z 1 

0 

G −(z) F −1 
ρ (1 − z) dz − y + + y 0 

]
= min 

G −∈ G −

∫ z 1 

0 
[ G −(z) − (λ− − μ−M −(z)) ] 

2 
w 

′ 
−(z) dz 

−
∫ z 1 

0 

(λ− − μ−M −(z)) 2 w 

′ 
−(z) dz + 2 λ−a + − 2 μ−y + + 2 μ−y 0 . (3.2) 

fter solving these two problems, we determine the Lagrange

ultipliers using the original constraints. 

Note that if μ+ = 0 , the optimal solution for problem (3.1) is

 

∗+ (z) = (λ+ ) + . Insert it into the constraints in problem (2.11) , we

now that the constraint admits no solution except y + 
a + = E 

z 1 + (ρ) .

hen 

y + 
a + = E 

z 1 + (ρ) , the optimal solution for problem (2.11) is

 

∗+ (z) = 

a + ∫ 1 
z 1 

w 

′ + (1 −z) dz 
. Moreover, if μ− = 0 , the optimal solution

or problem (3.2) is G 

∗−(z) = (λ−) + . Insert it into the constraints

n (2.12) , we know that the constraint admits no solution except
y + −y 0 

a + = E 

z 1 − (ρ) . When 

y + −y 0 
a + = E 

z 1 − (ρ) , the optimal solution for

roblem (2.12) is G 

∗−(z) = 

a + ∫ z 1 
0 

w 

′ −(z) dz 
. Thus next we consider the

ase y + 
a + � = E 

z 1 + (ρ) and 

y + −y 0 
a + � = E 

z 1 − (ρ) , then μ+ � = 0 and μ− � = 0 . 

Using Theorem 3.1 , we know that if a + E 

z 1 + (ρ) < y 0 + a + E 

z 1 − (ρ) ,

nd y + ∈ [ a + E 

z 1 + (ρ) , y 0 + a + E 

z 1 − (ρ)] , we have μ+ ≤ 0 ,

− ≥ 0 . Conversely, if y 0 + a + E 

z 1 − (ρ) < a + E 

z 1 + (ρ) and y + ∈
 y 0 + a + E 

z 1 − (ρ) , a + E 

z 1 + (ρ)] , we have μ+ ≥ 0 , μ− ≤ 0 . 

Analogous to the cases considered in Bi et al. (2013) , we

onsider the following four typical cases of M ± ( z ) which has two

onotone pieces, where 0 ≤ a < b ≤ 1. 

• Case 1: There exists a z 0 ∈ [ a , b ], such that M ± ( z ) is strictly in-

creasing across ( a , z 0 ), and strictly decreasing across ( z 0 , b ), and

M ± ( a ) < M ± ( b ) . (See Fig. 1 .) 
• Case 2: There exists a z 0 ∈ [ a , b ], such that M ± ( z ) is strictly in-

creasing across ( a , z 0 ), and strictly decreasing across ( z 0 , b ), and

M ± ( a ) ≥ M ± ( b ) . (See Fig. 2 ) 
• Case 3: There exists a z 0 ∈ [ a , b ], such that M ± ( z ) is strictly de-

creasing across ( a , z 0 ), and strictly increasing across ( z 0 , b ), and

M ± ( a ) ≥ M ± ( b ) . (See Fig. 3 .) 
• Case 4: There exists a z 0 ∈ [ a , b ], such that M ± ( z ) is strictly de-

creasing across ( a , z 0 ), and strictly increasing across ( z 0 , b ), and

M ± ( a ) < M ± ( b ) . (See Fig. 4 .) 

emark 3.1. Note that the case where M ± ( z ) has a finite num-

er of monotonic pieces only incurs notational complexity in the

pproach below, but manifests no essential difference. So, if the

ptimal solutions for the positive and negative part problems are
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derived with M ± ( z ) in the above four cases, we can obtain an op-

timal solution for the more general case when M ± ( z ) has a finite

number of monotonic pieces using a similar analysis. 

Based on Propositions 2.4 and 2.5 , we first consider the feasi-

bility of the positive part problem under the above four cases of

M ± ( z ). 

Proposition 3.1. 

(i) Assume y + 
a + ∈ ( b , E 

z 1 + (ρ)) . There is no feasible solution for prob-

lem (2.11) in Case 1 with M + (z 1 ) < E 

z 1 + (ρ) < M + (1) and Case

4 with M + (z 1 ) < E 

z 1 + (ρ) < M + (1) . Otherwise, there exists a

feasible solution for problem (2.11) . 

(ii) Assume y + 
a + = E 

z 1 + (ρ) . There exists at least one feasible solution

G + (·) = 

a + ∫ 1 
z 1 

w 

′ + (1 −z) dz 
for problem (2.11) , no matter which case

M + (z) is included in. 

(iii) Assume y + 
a + ∈ (E 

z 1 + (ρ) , b ) . There is no feasible solution for prob-

lem (2.11) in Case 2 with M + (1) < E 

z 1 + (ρ) < M + (z 1 ) and Case

3 with M + (1) < E 

z 1 + (ρ) < M + (z 1 ) . Otherwise, there exists a

feasible solution for problem (2.11) . 

Proof. 

(i) Define g(z) = 

∫ 1 
z [ M + (x ) − E 

z 1 + (ρ)] d[ −w + (1 − x )] , where

z ∈ [ z 1 , 1]. It is easy to see that g(z 1 ) = g(1) = 0 . Because

M + (z 1 ) < E 

z 1 + (ρ) < M + (1) and because the shape of M + (z) ,

we have g ( z ) is increasing in (z 1 , M 

−1 
+ (E 

z 1 + (ρ))) and de-

creasing in (M 

−1 
+ (E 

z 1 + (ρ)) , 1) . Thus g ( z ) ≥ 0 for z ∈ [ z 1 , 1].

According to Proposition 2.4 (2), there exists no feasible

solution for problem (2.11) . 

In other cases, it is easy to verify that the feasible condition

in Proposition 2.4 (1) is satisfied, thereby showing that there

exists a feasible solution for problem (2.11) . 

(ii) When 

y + 
a + = E 

z 1 + (ρ) , one can directly verify that G + (·) =
a + ∫ 1 

z 1 
w 

′ + (1 −z) dz 
is a feasible solution for problem (2.11) . 

(iii) Using Proposition 2.5 , the proof of (iii) is similar to that of

(i). 

�

We can derive the feasibility of the negative part problem under

the four cases, in the same process that we determined the feasi-

bility of the positive part problem. Because of this, we only show
he result in the following proposition and omit the proof for the

egative part problem. 

roposition 3.2. Assume that y + , a + satisfy the basic feasibility con-

ition for the negative part problem, which is similar to that for the

ositive part problem in Proposition 2.3 . 

(i) Assume 
y + −y 0 

a + > E 

z 1 − (ρ) . There is no feasible solution for prob-

lem (2.12) in Case 1 with M −(0) < E 

z 1 − (ρ) < M −(z 1 ) and Case

4 with M −(0) < E 

z 1 − (ρ) < M −(z 1 ) . Otherwise, there exists a

feasible solution for problem (2.12) . 

(ii) Assume 
y + −y 0 

a + = E 

z 1 − (ρ) . There exists at least one feasible so-

lution G −(·) = 

a + ∫ z 1 
0 

w 

′ −(z) dz 
for problem (2.12) , no matter which

case M −(z) is included in. 

(iii) Assume 
y + −y 0 

a + < E 

z 1 − (ρ) . There is no feasible solution for prob-

lem (2.12) in Case 2 with M −(z 1 ) < E 

z 1 − (ρ) < M −(0) and Case

3 with M −(z 1 ) < E 

z 1 − (ρ) < M −(0) . Otherwise, there exists a

feasible solution for problem (2.12) . 

emark 3.2. The intuitive explanations of the above two

ropositions are: The feasibility reflects the coordination among

he probability distortions and the market (represented by ρ) in a

athematical way. In other words, the feasibility condition model

equires some consistency between the probability distortion

nd the market. In Propositions 3.1 and 3.2 , we show that some

orms of M ± ( z ) do not satisfy the feasibility condition, therefore

lso showing that there exists no feasible solution for problems

2.11) and (2.12) . 

.2. The auxiliary problem 

For the convenience of calculation, we shall solve an auxiliary

roblem in this subsection. Consider problem 

in 

G ∈ G 

∫ b 

a 

[ G (z) − f (z)] 2 w 

′ (1 − z) dz, (3.3)

here w 

′ (1 − z) > 0 , and represents w 

′ + (1 − z) in the positive part

roblem, or w 

′ −(z) in the negative part problem. f ( z ) represents

+ − μ+ M + (z) in the positive part problem, or λ− − μ−M −(z) in

he negative part problem. Notice that the optimal solution for

roblem (3.3) depends mainly on the shape of f ( z ). First, to get

tarted, we give the following lemma. 

emma 3.1. Consider problem (3.3) . 

(i) If f ( z ) is in Case 1, the optimal solution for problem

(3.3) takes the form G (z) = f (z) 1 a<z≤z 2 + f (z 2 ) 1 z 2 <z≤b , where

z 2 ∈ [ ̄z 1 , z 0 ] is to be determined and z̄ 1 ∈ (a, z 0 ) is the part of

the solution that satisfied f ( ̄z 1 ) = f (b) . 

(ii) If f ( z ) is in Case 2, the optimal solution for problem (3.3) has

two possible forms, one is G ( z ) ≡ K ∈ [ f ( b ), f ( a )], where z ∈ [ a ,

b ], and the other is G (z) = f (z) 1 a<z≤z 2 + f (z 2 ) 1 z 2 <z≤b , where

z 2 ∈ [ a , z 0 ] is to be determined. 

(iii) If f ( z ) is in Case 3, the optimal solution for problem (3.3) has

two possible forms, one is G ( z ) ≡ K ∈ [ f ( b ), f ( a )], where z ∈ [ a ,

b ], and the other is G (z) = f (z 2 ) 1 a<z≤z 2 + f (z) 1 z 2 <z≤b , where

z 2 ∈ [ z 0 , b ] is to be determined. 

(iv) If f ( z ) is in Case 4, the optimal solution for problem

(3.3) has the form G (z) = f (z 2 ) 1 a<z≤z 2 + f (z) 1 z 2 <z≤b , where

z 2 ∈ [ z 0 , ̄z 1 ] is to be determined and z̄ 1 ∈ (z 0 , b) is the value

at which f ( ̄z 1 ) = f (a ) . 

roof. The proof of this lemma is similar to that of Lemma 3.9

nd Lemma 3.10 in Bi et al. (2013) , so we omit it. We just show

he result of this lemma in Figs. 1,2,3,4 . �

On account of Theorem 3.1 , in order to solve the positive part,

roblem (2.11) , and the negative part, problem (2.12) , we only need
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(

o consider the following two situations. First, if a + E 

z 1 + (ρ) < y 0 +
 + E 

z 1 − (ρ) , and then y + ∈ (a + E 

z 1 + (ρ) , y 0 + a + E 

z 1 − (ρ)) . Second, if y 0 +
 + E 

z 1 − (ρ) < a + E 

z 1 + (ρ) , and then y + ∈ (y 0 + a + E 

z 1 − (ρ) , a + E 

z 1 + (ρ)) . In

ection 3.3 , we give the optimal solutions for the positive part,

roblem (2.11) , and the negative part, problem (2.12) , when

 + E 

z 1 + (ρ) < y 0 + a + E 

z 1 − (ρ) . In Section 3.4 , we give the optimal so-

utions for the positive part, problem (2.11) , and the negative part,

roblem (2.12) , when y 0 + a + E 

z 1 − (ρ) < a + E 

z 1 + (ρ) . 

.3. The optimal solution for problems (2.11) and (2.12) if 

 + E 

z 1 + (ρ) ≤ y 0 + a + E 

z 1 − (ρ) 

In this subsection, we solve the positive part, problem (2.11) ,

nd the negative part, problem (2.12) , under the situation where

 + E 

z 1 + (ρ) ≤ y 0 + a + E 

z 1 − (ρ) . Under this situation, we know from

heorem 3.1 that we only need to consider the parameter in-

erval y + ∈ [ a + E 

z 1 + (ρ) , y 0 + a + E 

z 1 − (ρ)] . Furthermore, we know from

heorem 3.1 that μ+ ≤ 0 and μ− ≥ 0 if y + ∈ [ a + E 

z 1 + (ρ) , y 0 +
 + E 

z 1 − (ρ)] . We solve the positive part problem and the negative

art problem in Sections 3.3.1 and 3.3.2 , respectively. 

.3.1. The optimal solution for the positive part problem (2.11) 

We assume M + (z) has two monotonic intervals, (z 1 , z 0+ ) and

(z 0+ , 1) . Thus, M + (z) is in one of the above four cases with

 0 = z 0+ , a = z 1 and b = 1 . From Proposition 3.1 , we know that

f M + (z) is in Case 2 with E 

z 1 + (ρ) ∈ [ M + (1) , M + (z 1 )) or Case 3

ith E 

z 1 + (ρ) ∈ [ M + (1) , M + (z 1 )) , there exists no feasible solution

or problem (2.11) . So next, we consider the optimal solutions for

roblem (3.1) under other cases. 

Consider the following auxiliary problem 

min 

 + ∈ G 

∫ 1 

z 1 

[ G + (z) − (λ+ − μ+ M + (z))] 2 w 

′ 
+ (1 − z) dz, (3.4)

hich is introduced in Section 3.2 . The solution to problem (3.4) is

ummarized in the following lemma. 

emma 3.2. 

(i) Assume M + (z) is from Case 1, or from Case 2 with E 

z 1 + (ρ) >

M + (z 1 ) , then the optimal solution for ( 3.4 ) is 

G 

∗
+ (z) = [ λ+ − μ+ M + (z) ] 1 z 1 <z≤z ∗+ + 

[
λ+ − μ+ M + (z ∗+ ) 

]
1 z ∗+ <z≤1 , 

where z ∗+ is determined by ∫ 1 

z ∗+ 
[ M + (z ∗+ ) − M + (z)] w 

′ 
+ (1 − z) dz = 0 . (3.5)

In Case 1, we have z ∗+ ∈ [ ̄z 0+ , z 0+ ] and z̄ 0+ ∈ (z 1 , z 0+ ) is the value

at which M + ( ̄z 0+ ) = M + (1) . In Case 2 with E z 1 + (ρ) > M + (z 1 ) , we

have z ∗+ ∈ [ z 1 , z 0+ ] . 
(ii) Assume M + (z) is from Case 3 with E 

z 1 + (ρ) < M + (1) , or from

Case 4, then the optimal solution for ( 3.4 ) is 

G 

∗
+ (z) = 

[
λ+ − μ+ M + (z ∗+ ) 

]
1 z 1 <z≤z ∗+ + [ λ+ − μ+ M + (z) ] 1 z ∗+ <z≤1 , 

where z ∗+ is determined by ∫ z ∗+ 

z 1 

[ M + (z ∗+ ) − M + (z)] w 

′ 
+ (1 − z) dz = 0 . (3.6)

In Case 3 when E 

z 1 + (ρ) < M + (1) , then z ∗+ ∈ [ z 0+ , 1] . In Case 4,

we have z ∗+ ∈ [ z 0+ , ̄z 0+ ] , and z̄ 0+ ∈ (z 0+ , 1) is the value at which

M + ( ̄z 0+ ) = M + (z 1 ) . 

roof. The proof is given in Appendix A . �

In the following theorem, we use Lemma 3.2 to solve for the

ptimal solution for problem (3.1) , in which we involve the La-

range multipliers, (λ+ , μ+ ) . 
heorem 3.2. 

(i) Assume M + (z) is from Case 1, or from Case 2 with E 

z 1 + (ρ) >

M + (z 1 ) , then the optimal solution for ( 3.1 ) is 

G 

∗
+ (z) = [ λ+ − μ+ M + (z) ] 

+ 
1 z 1 <z≤z ∗+ + 

[
λ+ − μ+ M + (z ∗+ ) 

]+ 
1 z ∗+ <z≤1 , 

where z ∗+ is determined by (3.5) . 

(ii) Assume M + (z) is from Case 3 with E 

z 1 + (ρ) < M + (1) , or from

Case 4, then the optimal solution for ( 3.1 ) is 

G 

∗
+ (z) = 

[
λ+ − μ+ M + (z ∗+ ) 

]+ 
1 z 1 <z≤z ∗+ + [ λ+ − μ+ M + (z) ] 

+ 
1 z ∗+ <z≤1 , 

where z ∗+ is determined by (3.6) . 

roof. 

(i) The difference between problems (3.4) and (3.1) is the con-

straint in problem (3.1) that G + (z) ≥ 0 . Once we solve for

Case 1, the results based around the other cases can be ob-

tained in the same way. If M + (z 1 ) ≥ 0 , then 

[ λ+ − μ+ M + (z) ] 1 z 1 <z≤z ∗+ + 

[
λ+ − μ+ M + (z ∗+ ) 

]
1 z ∗+ <z≤1 

= [ λ+ − μ+ M + (z) ] 
+ 

1 z 1 <z≤z ∗+ + 

[
λ+ − μ+ M + (z ∗+ ) 

]+ 
1 z ∗+ <z≤1 

is the optimal solution for problem (3.1) . If M + (z 1 ) < 0

and M + (z 0+ ) > 0 , then the optimal solution for problem

(3.1) takes the form 

G + (z) = 0 × 1 

z 1 <z≤M 

−1 
+ ( 

λ+ 
μ+ ) 

+ [ λ+ − μ+ M + (z) ] 1 

M 

−1 
+ ( 

λ+ 
μ+ ) <z≤z̄ 

+ [ λ+ − μ+ M + ( ̄z ) ] 1 z̄ <z≤1 , 

where z̄ is to be determined. Inserting this into problem

(3.1) , after a similar calculation from Lemma 3.2 , we reach

the conclusion that 

z̄ = 

{
M 

−1 
+ 
(

λ+ 
μ+ 

)
, λ+ − μ+ M + (z ∗+ ) < 0 

z ∗+ , λ+ − μ+ M + (z ∗+ ) ≥ 0 . 

And the optimal solution for (3.1) is 

G 

∗
+ (z) = [ λ+ − μ+ M + (z) ] 

+ 
1 z 1 <z≤z ∗+ + 

[
λ+ − μ+ M + (z ∗+ ) 

]+ 
1 z ∗+ <z≤1 . 

If M + (z 1 ) < 0 and M + (z 0+ ) ≤ 0 , the optimal solution for prob-

lem (3.1) is G 

∗
+ (z) = 0 , which is also equal to 

G 

∗
+ (z) = [ λ+ − μ+ M + (z) ] 

+ 
1 z 1 <z≤z ∗+ + 

[
λ+ − μ+ M + (z ∗+ ) 

]+ 
1 z ∗+ <z≤1 . 

Once all the situations are summarized, we can formulate

our conclusion. 

(ii) The proof of (ii ) is similar to that from (i ) . 

�

We have shown the optimal solution for (3.1) in Theorem 3.2 .

n order to get the optimal solution for problem (2.11) , we need to

etermine the Lagrange multipliers, (λ+ , μ+ ) . But it is not easy to

et the explicit form of (λ+ , μ+ ) , so we only show the existence

nd uniqueness of (λ+ , μ+ ) according to the following proposition.

roposition 3.3. Let N(·) : [0 , 1] → R 

+ be a deterministic function.

hen equations 

E [ (λ − μN(Z)) + ] = a + 
E [ (λ − μN (Z)) + N (Z) ] = y + 

ave a unique solution ( λ, μ) with λ> 0, μ> 0 for any y + >
 , a + > 0 , satisfying inf { x : P (N(Z) < x ) > 0 } < 

y + 
a + < E [ N(Z)] , and

ith μ< 0 for any y + > 0 , a + > 0 , satisfying E [ N(Z)] < 

y + 
a + < sup { x :

 (N(Z) < x ) > 0 } . If y + 
a + = E [ N(Z)] , then the unique solution is λ =

 + , μ = 0 . 

roof. The proof of this lemma is similar to that in Bielecki et al.

2005) (Theorem 5.1). So we omit the details of the proof here. �
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L

 

To solve problem (2.11) , we only consider two cases: when

M + (z) is from Case 3 with E 

z 1 + (ρ) < M + (1) , or when it is from

Case 4. The conclusion, for all other cases, can be derived simi-

larly, thus we omit those derivations here. Assuming M + (z) is from

Case 3 with E 

z 1 + (ρ) < M + (1) , or from Case 4, we insert the optimal

solution from Theorem 3.2 into the two constraints from (2.11) ,

which gives us ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

∫ z ∗+ 
z 1 

[ λ+ − μ+ M + (z ∗+ )] + w 

′ 
+ (1 − z) dz 

+ 

∫ 1 
z ∗+ 

[ λ+ − μ+ M + (z)] + w 

′ 
+ (1 − z) dz = a + ∫ z ∗+ 

z 1 
[ λ+ − μ+ M + (z ∗+ )] + F −1 

ρ (1 − z) dz 

+ 

∫ 1 
z ∗+ 

[ λ+ − μ+ M + (z)] + F −1 
ρ (1 − z) dz = y + . 

(3.7)

Using Propositions 3.3 and (3.6) , we know that (3.7) has the unique

solution μ+ (z 1 , a + , y + ) < 0 and λ+ (z 1 , a + , y + ) . Thus, we are able

to get the optimal solution for problem (2.11) , which is shown in

Theorem 3.2 . 

Up to now, we have gotten the optimal solution for the

positive part problem (2.11) when a + E 

z 1 + (ρ) < y 0 + a + E 

z 1 − (ρ) . In

Section 3.3.2 , we solve for the negative part problem (2.12) under

the same situation. 

3.3.2. The optimal solution for the negative part problem (2.12) 

From Proposition 3.2 , we know that if M −(z) is from

Case 2 with E 

z 1 − (ρ) ∈ (M −(z 1 ) , M −(0)] or Case 3 with E 

z 1 − (ρ) ∈
[ M −(z 1 ) , M −(0)) , then there exists no feasible solution for prob-

lem (2.12) . Because of this, we next consider the optimal solution

for problem (3.2) in the relation to the other cases. 

Consider the following auxiliary problem 

min 

G −∈ G 

∫ z 1 

0 
[ G −(z) − (λ− − μ−M −(z)) ] 

2 
w 

′ 
−(z) dz, (3.8)

which is introduced in Section 3.2 . The solution to problem (3.8) is

summarized in the following lemma. 

Lemma 3.3. 

(i) If M −(z) is from Case 1, or from Case 2 with E 

z 1 − (ρ) > M −(0) ,

then the optimal solution for problem (3.8) is 

G 

∗
−(z) = [ λ− − μ−M −(z)] 1 0 <z≤z ∗− + [ λ− − μ−M −(z ∗−)] 1 z ∗−<z≤z 1 , 

where z ∗− is determined by ∫ z 1 

z ∗−
[ M −(z ∗−) − M −(z)] w 

′ 
−(z) dz = 0 . (3.9)

In Case 1, we have z ∗− ∈ ( ̄z 0 −, z 0 −) , where z̄ 0 − ∈ (0 , z 0 −) is the

value at which M −( ̄z 0 −) = M −(z 1 ) . In Case 2 with E 

z 1 − (ρ) >

M −(0) , we have z ∗− ∈ (0 , z 0 −) . 

(ii) If M −(z) is from Case 3 with E 

z 1 − (ρ) < M −(z 1 ) , or from Case

4, then the optimal solution for problem (3.8) is 

G 

∗
−(z) = [ λ− − μ−M −(z ∗−)] 1 0 <z≤z ∗− + [ λ− − μ−M −(z)] 1 z ∗−<z≤z 1 , 

where z ∗− is determined by ∫ z ∗−

0 

[ M −(z ∗−) − M −(z)] w 

′ 
−(z) dz = 0 . (3.10)

In Case 3 with E 

z 1 − (ρ) < M −(z 1 ) , we have z ∗− ∈ (z 0 −, z 1 ) . In Case

4, we have z ∗− ∈ (z 0 −, ̄z 0 −) , where z̄ 0 − ∈ (z 0 −, z 1 ) is the value at

which M −( ̄z 0 −) = M −(0) . 

Proof. The proof of this lemma is similar to that of Lemma 3.2 , so

we omit the proof here. �

If we add the constraint that G −(z) ≥ 0 , and consider problem

(3.2) , the optimal solution is summarized in the following theorem.
heorem 3.3. 

(i) If M −(z) is from Case 1, or from Case 2 with E 

z 1 − (ρ) > M −(0) ,

then the optimal solution for problem (3.2) is 

G 

∗
−(z) = [ λ− − μ−M −(z) ] 

+ 
1 0 <z≤z ∗− + 

[
λ− − μ−M −(z ∗−) 

]+ 
1 z ∗−<z≤z 1 , 

where z ∗− is determined by (3.9) . 

(ii) If M −(z) is from Case 3 with E 

z 1 − (ρ) < M −(z 1 ) , or from Case

4, then the optimal solution for problem (3.2) is 

G 

∗
−(z) = 

[
λ− − μ−M −(z ∗−) 

]+ 
1 0 <z≤z ∗− + [ λ− − μ−M −(z) ] 

+ 
1 z ∗−<z≤z 1 , 

where z ∗− is determined by (3.10) . 

roof. The proof of this theorem is similar to that in Theorem 3.2 ,

o we omit the details. �

We have given the optimal solution for (3.2) in Theorem 3.3 .

n order to get the optimal solution for problem (2.12) , we need

o determine the Lagrange multipliers, (λ−, μ−) . Fortunately, we

ave solved for the existence and uniqueness of (λ−, μ−) from

roposition 3.3 . 

Thus we are able to solve for the optimal solution for prob-

em (2.12) . We use M −(z) from Case 3 with E 

z 1 − (ρ) < M −(z 1 ) , or

rom Case 4, as the main examples in our solution. The conclu-

ions under other cases can be derived using the same process

e show in our solution. If we assume M −(z) is from Case 3 with

 

z 1 − (ρ) < M −(z 1 ) , or from Case 4, and insert the optimal solution

rom Theorem 3.3 into the two constraints from (2.12) , we get 
 

 

 

 

 

 

 

∫ z ∗−
0 

[ λ− − μ−M −(z ∗−)] + w 

′ 
−(z) dz 

+ 

∫ z 1 
z ∗−

[ λ− − μ−M −(z)] + w 

′ 
−(z) dz = a + ∫ z ∗−

0 
[ λ− − μ−M −(z ∗−)] + F −1 

ρ (1 − z) dz 

+ 

∫ z 1 
z ∗−

[ λ− − μ−M −(z)] + F −1 
ρ (1 − z) dz = y + − y 0 . 

(3.11)

Using Propositions 3.3 and (3.10) , we know that (3.11) has

he unique solution μ−(z 1 , a + , y + ) > 0 . Thus, we are able to

et the optimal solution for problem (2.12) which is shown in

heorem 3.3 . 

.4. The optimal solution for problems (2.11) and (2.12) if 

 0 + a + E 

z 1 − (ρ) < a + E 

z 1 + (ρ) 

In this subsection, we solve the positive part, prob-

em (2.11) , and the negative part, problem (2.12) , when

 0 + a + E 

z 1 − (ρ) < a + E 

z 1 + (ρ) . Under this situation, we know

rom Theorem 3.1 that we only need to consider the pa-

ameter interval y + ∈ (y 0 + a + E 

z 1 − (ρ) , a + E 

z 1 + (ρ)) . Furthermore,

e know from Theorem 3.1 that μ+ > 0 and μ− < 0 if

 + ∈ (y 0 + a + E 

z 1 − (ρ) , a + E 

z 1 + (ρ)) . We solve the positive and the

egative part problems in Sections 3.4.1 and 3.4.2 , respectively.

he conclusion in this subsection is parallel to the one found in

ection 3.3 . So we omit the proofs and only show the results in

he following subsections. 

.4.1. The optimal solution for the positive part problem (2.11) 

From Proposition 3.1 , we know that if M + (z) is from Case

 with E 

z 1 + (ρ) ∈ (M + (z 1 ) , M + (1)] , or from Case 4 with E 

z 1 + (ρ) ∈
 M + (z 1 ) , M + (1)) , then there exists no feasible solution for prob-

em (2.11) , so next we consider the optimal solution for problem

3.1) in relation to the other cases. 

emma 3.4. 

(i) Assume M + (z) is from Case 1 with E 

z 1 + (ρ) > M + (1) , or from

Case 2, then the optimal solution for ( 3.4 ) is 

G 

∗
+ (z) = 

[
λ+ − μ+ M + (z ∗+ ) 

]
1 z 1 <z≤z ∗+ + [ λ+ − μ+ M + (z) ] 1 z ∗+ <z≤1 , 
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where z ∗+ is determined by ∫ z ∗+ 

z 1 

[
M + (z ∗+ ) − M + (z) 

]
w 

′ 
+ (1 − z) dz = 0 . (3.12)

In Case 1 with E 

z 1 + (ρ) > M + (1) , we have z ∗+ ∈ [ z 0+ , 1) . In Case

2, we have z ∗+ ∈ [ z 0+ , ̄z 0+ ) , where z̄ 0+ ∈ [ z 0+ , 1) is the value at

which M + ( ̄z 0+ ) = M + (z 1 ) . 

(ii) Assume M + (z) is from Case 3, or from Case 4 with E 

z 1 + (ρ) <

M + (z 1 ) , then the optimal solution for problem (3.4) is 

G 

∗
+ (z) = [ λ+ − μ+ M + (z) ] 1 z 1 <z≤z ∗+ + 

[
λ+ − μ+ M + (z ∗+ ) 

]
1 z ∗+ <z≤1 , 

where z ∗+ is determined by ∫ 1 

z ∗+ 

[
M + (z ∗+ ) − M + (z) 

]
w 

′ 
+ (1 − z) dz = 0 . (3.13)

In Case 3, we have z ∗+ ∈ [ ̄z 0+ , z 0+ ] , where z̄ 0+ ∈ (z 1 , z 0+ ) is the

value at which M + ( ̄z 0+ ) = M + (1) . In Case 4 with E 

z 1 + (ρ) <

M + (z 1 ) , we have z ∗+ ∈ [ z 1 , z 0+ ] . 

heorem 3.4. 

(i) Assume M + (z) is from Case 1 with E 

z 1 + (ρ) > M + (1) , or from

Case 2, then the optimal solution for ( 3.1 ) is 

G 

∗
+ (z) = 

[
λ+ − μ+ M + (z ∗+ ) 

]+ 
1 z 1 <z≤z ∗+ + [ λ+ − μ+ M + (z) ] 

+ 
1 z ∗+ <z≤1 , 

where z ∗+ is determined by (3.12) . 

(ii) Assume M + (z) is from Case 3, or from Case 4 with E 

z 1 + (ρ) <

M + (z 1 ) , then the optimal solution for problem (3.1) is 

G 

∗
+ (z) = [ λ+ − μ+ M + (z) ] 

+ 
1 z 1 <z≤z ∗+ + 

[
λ+ − μ+ M + (z ∗+ ) 

]+ 
1 z ∗+ <z≤1 , 

where z ∗+ ∈ [ ̄z 0+ , z 0+ ] is determined by (3.13) . 

Next we solve problem (2.11) . We take M + (z) from Case 3, or

rom Case 4 with E 

z 1 + (ρ) < M + (z 1 ) , as the main examples in our

olution. The conclusions under other cases can be derived using

he same process we show in our solution. If we assume M + (z) is

rom Case 3, or from Case 4 with E 

z 1 + (ρ) < M + (z 1 ) , and insert the

ptimal solution from Theorem 3.4 into the two constraints from

2.11) , we get 

 

 

 

 

 

 

 

∫ z ∗+ 
z 1 

[ λ+ − μ+ M + (z) ] 
+ 

w 

′ 
+ (1 − z) dz 

+ 

∫ 1 
z ∗+ 

[
λ+ − μ+ M + (z ∗+ ) 

]+ 
w 

′ 
+ (1 − z) dz = a + ∫ z ∗+ 

z 1 
[ λ+ − μ+ M + (z) ] 

+ 
F −1 
ρ (1 − z) dz 

+ 

∫ 1 
z ∗+ 

[
λ+ − μ+ M + (z ∗+ ) 

]+ 
F −1 
ρ (1 − z) dz = y + . 

(3.14) 

Using Propositions 3.3 and (3.13) , we know that (3.14) has the

nique solution μ+ (z 1 , a + , y + ) > 0 and λ+ (z 1 , a + , y + ) . Thus, we

re able to get the optimal solution for problem (2.11) which is

hown in Theorem 3.4 . 

So far, we have gotten the optimal solution for the positive part

roblem (2.11) when y 0 + a + E 

z 1 − (ρ) < a + E 

z 1 + (ρ) . In Section 3.4.2 ,

e solve for the negative part problem (2.12) under the same sit-

ation. 

.4.2. The optimal solution for the negative part problem (2.12) 

From Proposition 3.2 , we know that if M −(z) is from Case

 with E 

z 1 − (ρ) ∈ (M −(0) , M −(z 1 )] , or from Case 4 with E 

z 1 − (ρ) ∈
 M −(0) , M −(z 1 )) , then there exists no feasible solution for prob-

em (2.12) , so next we consider the optimal solution for problem

3.2) in relation to the other cases. 

emma 3.5. 

(i) If M −(z) is from Case 1 with E 

z 1 − (ρ) > M −(z 1 ) , or from Case

2, then the optimal solution for problem (3.8) is 

G 

∗
−(z) = [ λ− − μ−M −(z ∗−)] 1 0 <z≤z ∗ + [ λ− − μ−M −(z)] 1 z ∗−<z≤z 1 , 
−
where z ∗− is determined by ∫ z ∗−

0 

[ M −(z ∗−) − M −(z)] w 

′ 
−(z) dz = 0 . (3.15)

In Case 1 with E 

z 1 − (ρ) > M −(z 1 ) , we have z ∗− ∈ (z 0 −, z 1 ) . In

Case 2, we have z ∗− ∈ (z 0 −, ̄z 0 −) , where z̄ 0 − ∈ (z 0 −, z 1 ) is the

value at which M −( ̄z 0 −) = M −(0) . 

(ii) If M −(z) is from Case 3, or from Case 4 with E 

z 1 − (ρ) < M −(0) ,

then the optimal solution for problem (3.8) is 

G 

∗
−(z) = [ λ− − μ−M −(z)] 1 0 <z≤z ∗− + [ λ− − μ−M −(z ∗−)] 1 z ∗−<z≤z 1 , 

where z ∗− is determined by ∫ z 1 

z ∗−
[ M −(z ∗−) − M −(z)] w 

′ 
−(z) dz = 0 , (3.16)

In Case 3, we have z ∗− ∈ ( ̄z 0 −, z 0 −) , where z̄ 0 − ∈ (0 , z 0 −) is the

value at which M −( ̄z 0 −) = M −(z 1 ) . In Case 4 with E 

z 1 − (ρ) <

M −(z 1 ) , we have z ∗− ∈ (0 , z 0 −) . 

heorem 3.5. 

(i) If M −(z) is from Case 1 with E 

z 1 − (ρ) > M −(z 1 ) , or from Case

2, then the optimal solution for problem (3.2) is 

G 

∗
−(z) = [ λ− − μ−M −(z ∗−)] + 1 0 <z≤z ∗− + [ λ− − μ−M −(z)] + 1 z ∗−<z≤z 1 ,

where z ∗− is determined by (3.15) . 

(ii) If M −(z) is from Case 3, or from Case 4 with E 

z 1 − (ρ) < M −(0) ,

then the optimal solution for problem (3.2) is 

G 

∗
−(z) = [ λ− − μ−M −(z)] + 1 0 <z≤z ∗− + [ λ− − μ−M −(z ∗−)] + 1 z ∗−<z≤z 1 ,

where z ∗− is determined by (3.16) . 

Next we solve problem (2.12) . We take M −(z) from Case 3, or

rom Case 4 with E 

z 1 − (ρ) < M −(0) , as the main examples in our

olution. The conclusions under other cases can be derived using

he same methods shown in our solution. Assuming M −(z) is from

ase 3, or from Case 4 with E 

z 1 − (ρ) < M −(0) , we insert the optimal

olution in Theorem 3.5 into the two constraints in (2.12) , and get

 

 

 

 

 

 

 

∫ z ∗−
0 

[ λ− − μ−M −(z)] + w 

′ 
−(z) dz 

+ 

∫ z 1 
z ∗−

[ λ− − μ−M −(z ∗−)] + w 

′ 
−(z) dz = a + ∫ z ∗−

0 
[ λ− − μ−M −(z)] + F −1 

ρ (1 − z) dz 

+ 

∫ z 1 
z ∗−

[ λ− − μ−M −(z ∗−)] + F −1 
ρ (1 − z) dz = y + − y 0 . 

(3.17) 

Using Propositions 3.3 and (3.16) , we know that (3.17) has the

nique solution μ−(z 1 , a + , y + ) < 0 . Thus we are able to get the op-

imal solution for problem (2.12) which is shown in Theorem 3.5 . 

. The optimal attainable wealth 

In the above section, we solved the positive and negative

art problems in Step 1. In this section, we talk about prob-

em (2.13) from Step 2. We give the optimal values v + (z 1 , a + , y + )
nd v −(z 1 , a + , y + ) of the positive and negative part prob-

ems when a + E 

z 1 + (ρ) ≤ y + ≤ y 0 + a + E 

z 1 − (ρ) (see Section 3.3 ), then

+ (z 1 , a + , y + ) ≤ 0 , μ−(z 1 , a + , y + ) ≥ 0 . The result for other cases

an be derived using the same method we show in this section. 

We only consider M + (z) from Case 3 with E 

z 1 + (ρ) < M + (1) , or

rom Case 4 (see Theorem 3.2 (ii)). The results for other cases can
e derived similarly, so we omit them here. If M + (z) is from Case

 with E 

z 1 + (ρ) < M + (1) , or from Case 4, then the optimal value of

he positive part, problem (2.11) , is 

 + (z 1 , a + , y + ) = 

∫ z ∗+ 

z 1 

[
λ+ − μ+ M + (z ∗+ ) 

][
λ+ − μ+ M + (z ∗+ ) 

]+ 
w 

′ 
+ (1 − z) dz 

+ 

∫ 1 

z ∗+ 
[ λ+ − μ+ M + (z) ] [ λ+ − μ+ M + (z) ] 

+ 
w 

′ 
+ (1 − z) dz 

= λ+ a + − μ+ y + , 

n which we use (c + ) 2 = cc + for any c, and Eqs. (3.6) –(3.7) . 
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the optimal value of the negative part problem (2.12) is 

have the same form as above when other cases are considered. At this 

−(z 1 , a + , y + )(y + − y 0 ) 

(4.1) 

 μ+ ) and (λ−, μ−) . Due to this, we cannot derive the explicit forms of 

ties about the optimal value. 

 consider y + ∈ [ a + E 

z 1 + (ρ) , y 0 + a + E 

z 1 − (ρ)] . From Theorem 3.1 , we know 

(4.1) satisfy a + E 

z 1 + (ρ) ≤ y + ≤ y 0 + a + E 

z 1 − (ρ) , then μ+ ≤ 0 , μ− ≥ 0 . This 

ase 4. If (z 1 , a + , y + ) from problem (4.1) satisfy 

(4.2) 

n to (2.11) is 

1 , 

x 
dz 

<0 

(4.3) 

)] 2 

 dz 

 

 

[ M + (z ∗+ ) − M + (z) ] 
w 

′ + (1 −z) ∫ 1 
z 1 

w 

′ + (1 −x ) dx 
dz 

}2 
+ 

a 2 + ∫ 1 
z 1 

w 

′ + (1 − z) dz 
. (4.4) 

Case 4. If (z 1 , a + , y + ) from problem (4.1) satisfy 

 − M −(z ∗−)] M −(z) 
w 

′ 
−(z) ∫ z 1 

0 
w 

′ −(x ) dx 
dz 

(z 1 ) 
, (4.5) 

 for (2.12) is 

z 1 , 

 

>0 

(4.6) 

)] 2 

 

M −(z ∗−) − M −(z) ] 
w 

′ −(z) ∫ z 1 
0 

w 

′ −(x ) dx 
dz 

} 2 + 

a 2 + ∫ z 1 
0 w 

′ −(z) dz 
. 
Moreover, if M −(z) is from Case 3 with E 

z 1 − (ρ) < M −(z 1 ) , then 

v −(z 1 , a + , y + ) = λ−a + − μ−(y + − y 0 ) . 

It is not difficult to verify that v + (z 1 , a + , y + ) and v −(z 1 , a + , y + ) 
point, problem (2.13) becomes 

min λ+ (z 1 , a + , y + ) a + − μ+ (z 1 , a + , y + ) y + + λ−(z 1 , a + , y + ) a + − μ

subject to 

{ 

z 1 ∈ (0 , 1) , 
a + > 0 , 

y + > 0 . 

Notice that it is not easy to give the explicit solutions for (λ+ ,
v + (z 1 , a + , y + ) and v −(z 1 , a + , y + ) . Instead, we derive certain proper

4.1. The optimal quantile when a + E 

z 1 + (ρ) ≤ y 0 + a + E 

z 1 − (ρ) 

Under the situation a + E 

z 1 + (ρ) ≤ y 0 + a + E 

z 1 − (ρ) , we only need to

that if the optimal values of parameters (z 1 , a + , y + ) , for problem 

produces the following theorems. 

Theorem 4.1. 

(i) Assume M + (z) is from Case 3 with E 

z 1 + (ρ) < M + (1) or from C

E 

z 1 + (ρ) < 

y + 
a + 

< 

∫ 1 
z ∗+ 

M + (z) 
[
M + (z) − M + (z ∗+ ) 

]
w 

′ 
+ (1 −z) ∫ 1 

z 1 
w 

′ + (1 −x ) dx 
dz ∫ 1 

z ∗+ 
[ M + ( z) − M + (z ∗+ ) ] 

w 

′ + (1 −z) ∫ 1 
z 1 

w 

′ + (1 −x ) dx 
dz 

, 

we see that λ+ − μ+ M + (z ∗+ ) > 0 , and that the optimal solutio

G 

∗
+ (z) = 

[
λ+ − μ+ M + (z ∗+ ) 

]
1 z 1 <z≤z ∗+ + [ λ+ − μ+ M + (z) ] 1 z ∗+ <z≤

where z ∗+ is determined by (3.6) and (λ+ , μ+ ) is given by ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

μ+ = 

y + −a + E 
z 1 + (ρ) ∫ 1 

z 1 
w ′ + (1 −z) dz {∫ 1 

z ∗+ 
[ M + (z ∗+ )−M + (z)] 

w ′ + (1 −z) ∫ 1 
z 1 

w ′ + (1 −x ) dx 
dz 

}2 

−∫ 1 z ∗+ 
[ M + (z ∗+ )−M + (z)] 2 

w ′ + (1 −z) ∫ 1 
z 1 

w ′ + (1 −x ) d

λ+ = 

a + ∫ 1 
z 1 

w 

′ + (1 −z) dz 
+ μ+ E 

z 1 + (ρ) . 

Moreover, the optimal value of problem (2.11) is 

v + (z 1 , a + , y + ) = 

[ y + −a + E 
z 1 + (ρ∫ 1 

z 1 
w 

′ + (1 −z)

∫ 1 
z ∗+ 

[ M + (z ∗+ ) − M + (z) ] 
2 w 

′ + (1 −z) ∫ 1 
z 1 

w 

′ + (1 −x ) dx 
dz −

{∫ 1
z ∗+

(ii) Assume M −(z) is from Case 3 with E 

z 1 − (ρ) < M −(z 1 ) , or from 

E 

z 1 − (ρ) > 

y + − y 0 
a + 

> 

E 

z 1 − (ρ)[ M −(z ∗−) − M −(z 1 )] + 

∫ z 1 
z ∗−

[ M −(z)

E 

z 1 − (ρ) − M −

we see that λ− − μ−M −(z 1 ) > 0 , and that the optimal solution

G 

∗
−(z) = 

[
λ− − μ−M −(z ∗−) 

]
1 0 <z≤z ∗− + [ λ− − μ−M −(z) ] 1 z ∗−<z≤

where z ∗− is determined by (3.10) and (λ−, μ−) is given by ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

μ− = 

y + −y 0 −a + E 
z 1 − (ρ) ∫ z 1 

0 
w ′ − (z) dz {∫ z 1 

z ∗−
[ M −(z ∗−)−M −(z)] 

w ′ − (z) ∫ z 1 
0 

w ′ − (x ) dx 
dz 

}2 

−∫ z 1 
z ∗−

[ M −(z ∗−)−M −(z)] 2 
w ′ − (z) ∫ z 1 

0 
w ′ − (x ) dx 

dz

λ− = 

a + ∫ z 1 
0 

w 

′ −(z) dz 
+ μ−E 

z 1 − (ρ) . 

Moreover, the optimal value of problem (2.12) is 

v −(z 1 , a + , y + ) = 

[ y + −y 0 −a + E 
z 1 − (ρ∫ z 1 

0 
w 

′ −(z) dz ∫ z 1 
z ∗−

[ M −(z ∗−) − M −(z) ] 
2 w 

′ −(z) ∫ z 1 
0 

w 

′ −(x ) dx 
dz −

{ ∫ z 1 
z ∗−

[

Proof. 
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x 
dz (4.7) 

 

′ 
+ (1 − z) dz = a + 
 

−1 
ρ (1 − z) dz = y + . 

 + (z)] 2 
w 

′ 
+ (1 − z) ∫ 1 

z 1 
w 

′ + (1 − x ) dx 
dz < 0 , 

 

)] 
w 

′ 
+ (1 −z) ∫ 1 

z 1 
w 

′ + (1 −x ) dx 
dz−a + 

∫ 1 
z ∗+ 

M + (z)[ M + (z) −M + (z ∗+ )] 
w 

′ 
+ (1 −z) ∫ 1 

z 1 
w 

′ + (1 −x ) dx 
dz 

 

(z)] 
w 

′ + (1 −z) ∫ 1 
z 1 

w 

′ + (1 −x ) dx 
dz 

}2 

−∫ 1 z ∗+ 
[ M + (z ∗+ ) −M + (z)] 2 

w 

′ + (1 −z) ∫ 1 
z 1 

w 

′ + (1 −x ) dx 
dz 

>0 . 

1 , 

s in (2.11) . According to the result in Section 3.3.1 , G 

∗+ (z) is the optimal 

ptimal value of problem (2.11) can be derived. 

R z) = G 

∗+ (z) − G 

∗−(z) , there is a jump between the positive and the neg- 

a at there is also a jump in the optimal solution for problems (2.7) and 

( s a difference between the behavioral and the classical mean-variance 

s ions w + (·) and w −(·) on positive wealth X + and negative wealth X −, 

r  variance of X return to the conventional mean and variance of X . Then 

t ce setting. 

4

T

 + (z 1 ) . If the optimal values of (z 1 , a + , y + ) for problem (4.1) satisfy 

z ∗+ 
 1 

[ M + (z ∗+ ) − M + (z)] M + (z) 
w 

′ 
+ (1 −z) ∫ 1 

z 1 
w 

′ + (1 −x ) dx 
dz 

ρ) − M + (z 1 ) 
(4.8) 

) is 

 the negative parts of the optimal solution for problem (2.8) . It follows that 

d (2.5) as well. 

(0) . If the optimal values of parameters (z 1 , a + , y + ) for problem (4.1) sat- 

(4.9) 

is 

 the negative parts of the optimal solution for problem (2.8) . It follows that 

d (2.5) as well. 

P m 4.1 . So we omit it here. �
(i) Set ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

μ+ = 

y + −a + E 
z 1 + (ρ) ∫ 1 

z 1 
w ′ + (1 −z) dz {∫ 1 

z ∗+ 
[ M + (z ∗+ )−M + (z)] 

w ′ + (1 −z) ∫ 1 
z 1 

w ′ + (1 −x ) dx 
dz 

}2 

−∫ 1 z ∗+ 
[ M + (z ∗+ )−M + (z)] 2 

w ′ + (1 −z) ∫ 1 
z 1 

w ′ + (1 −x ) d

λ+ = 

a + ∫ 1 
z 1 

w 

′ + (1 −z) dz 
+ μ+ E 

z 1 + (ρ) , 

which makes it easy to verify that (λ+ , μ+ ) satisfy { ∫ z ∗+ 
z 1 

[
λ+ − μ+ M + (z ∗+ ) 

]
w 

′ 
+ (1 − z) dz + 

∫ 1 
z ∗+ 

[ λ+ − μ+ M + (z) ] w∫ z ∗+ 
z 1 

[
λ+ − μ+ M + (z ∗+ ) 

]
F −1 
ρ (1 − z) dz + 

∫ 1 
z ∗+ 

[ λ+ − μ+ M + (z) ] F

Because of equation (4.2) and the fact that { ∫ 1 

z ∗+ 
[ M + (z ∗+ ) −M + (z)] 

w 

′ 
+ (1 − z) ∫ 1 

z 1 
w 

′ + (1 − x ) dx 
dz 

} 2 

−
∫ 1 

z ∗+ 
[ M + (z ∗+ ) −M

we see that μ+ < 0 , and 

λ+ − μ+ M + (z ∗+ ) = 

1 ∫ 1 
z 1 

w 

′ + (1 − z) dz 
×

y + 
∫ 1 

z ∗+ 
[ M + (z) −M + (z ∗+{∫ 1 
z ∗+ 

[ M + (z ∗+ ) −M +

Set 

G 

∗
+ (z) = [ λ+ − μ+ M + (z ∗+ )] 1 z 1 <z≤z ∗+ + [ λ+ − μ+ M + (z)] 1 z ∗+ <z≤

then (λ+ , μ+ ) satisfy (3.7) and G 

∗+ (z) satisfies the constraint

value of problem (2.11) . After some simple calculation, the o

(ii) The proof of (ii) is similar to that of (i). So we omit it here. 

�

emark 4.1. Because the optimal solution for problem (2.8) is G 

∗(
tive parts of the optimal solution for problem (2.8) . It follows th

2.5) as well. The jump in the optimal terminal wealth structure i

etting. The reason is that we put the probability distortion funct

espectively. If we set w + (z) = w −(z) = z, the behavioral mean and

he result in this paper return to the result in classical mean-varian

.2. The optimal quantile when y + ∈ (y 0 + a + E 

z 1 − (ρ) , a + E 

z 1 + (ρ)) 

heorem 4.2. 

(i) Assume M + (z) is from Case 3, or from Case 4 with E 

z 1 + (ρ) < M

E 

z 1 + (ρ) > 

y + 
a + 

> 

E 

z 1 + (ρ)[ M + (z ∗+ ) − M + (z 1 )] − ∫ 
z

E 

z 1 + (

we have λ+ − μ+ M + (z 1 ) > 0 and the optimal solution for (2.11

G 

∗
+ (z) = [ λ+ − μ+ M + (z) ] 1 z 1 <z≤z ∗+ + 

[
λ+ − μ+ M + (z ∗+ ) 

]
1 z ∗+ <z≤1 . 

This shows that there may exist a jump between the positive and

there is also a jump in the optimal solution for problems (2.7) an

(ii) Assume M −(z) is from Case 3, or from Case 4 with E 

z 1 − (ρ) < M −
isfy 

E 

z 1 − (ρ) < 

y + − y 0 
a + 

< 

∫ z 1 
z ∗−

M −(z)[ M −(z) − M −(z ∗−)] 
w ′ −(z) ∫ z 1 

0 
w ′ −(x ) dx 

dz ∫ z 1 
z ∗−

[ M −( z) − M −(z ∗−) ] 
w ′ −(z) ∫ z 1 

0 
w ′ −(x ) dx 

dz 
, 

we have λ− − μ−M −(z ∗−) > 0 and the optimal solution to (2.12) 

G 

∗
−(z) = [ λ− − μ−M −(z) ] 1 0 <z≤z ∗− + 

[
λ− − μ−M −(z ∗−) 

]
1 z ∗−<z≤z 1 . 

This shows that there may exist a jump between the positive and

there is also a jump in the optimal solution for problems (2.7) an

roof. The proof for this theorem is similar to the proof of Theore
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Fig. 5. M + (z) in Example 5.2 . 
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Fig. 6. M −(z) in Example 5.2 . 
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4.3. Discussion of an extreme case of the optimal attainable wealth 

In this subsection, we show that under some extreme case, the

loss of the investor will go to ∞ . For example, assume M −(z) is

from Case 3 and M −(0) = + ∞ . If the optimal values of parameters

(z 1 , a + , y + ) for problem (4.1) satisfy E 

z 1 − (ρ) < 

y + −y 0 
a + and then μ− <

0 , the optimal solution for (2.12) is 

G 

∗
−(z) = [ λ− − μ−M −(z)] + 1 0 <z≤z ∗− + [ λ− − μ−M −(z ∗−)] + 1 z ∗−<z≤z 1 , 

which means that G 

∗−(0) = + ∞ , then the loss of the investor will

go to ∞ , i.e., the bad state will go to −∞ . 

From the conclusions we derived in this paper, we know that, if

M −(z) is from other cases, i.e., Case 1, 2, 4 or Case 3 with M −(0) <

+ ∞ , then the bad state cannot go to −∞ . 

5. Examples 

In this section, we give some examples to illustrate our results.

We show that some commonly used probability distortions are in-

cluded in the four cases we considered above. 

Example 5.1. We assume w + (z) = z γ for some γ ∈ (0, 1]. Because

F −1 
ρ (1 − z) is decreasing for z ∈ (0, 1) for any ρ , M + (z) = 

F −1 
ρ (1 −z) 

w 

′ + (1 −z) 
is

decreasing for z ∈ (0, 1). Notice that this form of M + (z) is included

in Case 3 as z 0+ = 1 . 

Moreover, we assume w −(z) = z γ for some γ ∈ (0, 1] and ρ fol-

lows a log-normal distribution, i.e., F ρ (x ) = �( ln x − ˜ η
˜ σ ) , where �( · )

is the cumulative distribution function of the standard normal

distribution. It is not difficult to verify that M −(z) is increasing

across (0, z 0 ) and decreasing across ( z 0 , 1) for some z 0 ∈ [0, 1] and

M −(1) = 0 . This M −(z) is included in Case 2. 

A reversed S-shaped probability distortion has been used and

studied by many authors, see, e.g., Tversky and Kahneman (1992),

Jin and Zhou (2008) , Bi et al. (2013) , and so on. For a reversed

S-shaped distortion w (x ) , w 

′ (x ) > 1 around both x = 0 and x = 1 .

This implies that the reversed S-shaped distortion puts higher

weights on both very good and very bad outcomes. In other words,

the agent exaggerates the small probabilities of both very good and

very bad scenarios. 

Example 5.2. Take 

w + (z) = 

z γ

[ z γ + (1 − z) γ ] 
1 
γ

, 

for some γ ∈ (0, 1), which is the reversed S-shaped distortion, mak-

ing w + (z) is concave initially and then convex. ρ also follows the

log-normal distribution, i.e., F ρ (x ) = �( ln x − ˜ η
˜ σ ) . 

If we let γ = 0 . 7 , ˜ η = 0 . 1 and ˜ σ = 0 . 4 , and then use the math-

ematical software MATLAB, we can draw the picture of M + (z) in

Fig. 5 . We can see from Fig. 5 that M + (z) increases first but later

starts to decrease. We can also see that M + (z) attains its max-

imum at some value z 0 . Moreover, M + (1) = 

F −1 
ρ (0) 

w 

′ + (0) 
= 0 ≤ M + (0) .

Thus, this form of M + (z) is included in Case 2. Actually, M + (z) is

included in Case 2 for ∀ γ ∈ (0, 1). 

Meanwhile, take 

w −(z) = 

z γ

[ z γ + (1 − z) γ ] 
1 
γ

, 

for some γ ∈ (0, 1), and ρ also follows a log-normal distribution,

i.e., F ρ (x ) = �( ln x − ˜ η
˜ σ ) . 

If we let γ = 0 . 7 , ˜ η = 0 . 1 and ˜ σ = 0 . 4 , and then use MATLAB,

we can draw the picture of M −(z) in Fig. 6 . We can see from the

picture that M −(z) increases first but later starts to decrease. We

can also see that M −(z) attains its maximum at some value z .
0 
oreover, M −(0) = 

F −1 
ρ (1) 

w 

′ −(0) 
= 0 ≤ M −(1) . Thus, this form of M −(z)

s included in Case 1. Actually, M −(z) is included in Case 1 for

 γ ∈ (0, 1). 

. The efficient frontier and the efficient strategy 

In this section, we show the efficient frontier and the efficient

trategy of the initial behavioral mean-variance problem (2.2) . 

From Sections 2.4 −2.5 , we know that the optimal solution for

he quantile problem (2.8) is 

 

∗(z) = G 

∗
+ (z) 1 z ∗

1 
<z≤1 − G 

∗
−(z) 1 0 <z≤z ∗

1 
, 

here G 

∗+ (z) and G 

∗−(z) are the optimal solutions for the positive

art problem (2.9) , and the negative part problem (2.10) , respec-

ively, and z ∗
1 

is optimal for problem (4.1) . It follows that the opti-

al solution for (2.7) is 

 

∗ = G 

∗(1 − F ρ (ρ)) = G 

∗
+ (1 − F ρ (ρ)) 1 z ∗

1 
< 1 −F ρ (ρ) ≤1 

−G 

∗
−(1 − F ρ (ρ)) 1 0 < 1 −F ρ (ρ) ≤z ∗

1 

= G 

∗
+ (1 − F ρ (ρ)) 1 ρ<F −1 

ρ (1 −z ∗ ) − G 

∗
−(1 − F ρ (ρ)) 1 ρ≥F −1 

ρ (1 −z ∗ ) . 

1 1 
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ence, the optimal terminal wealth is 

 

∗ = Y ∗ + k = G 

∗
+ (1 − F ρ (ρ)) 1 ρ<F −1 

ρ (1 −z ∗
1 
) 

−G 

∗
−(1 − F ρ (ρ)) 1 ρ≥F −1 

ρ (1 −z ∗
1 
) + k. (6.1) 

emark 6.1. In this remark, we discuss the economical interpre-

ation of the optimal wealth profile (6.1) . Note that if we con-

ider k as a “reference point”, then G 

∗+ (1 − F ρ (ρ)) 1 
ρ<F −1 

ρ (1 −z ∗
1 
) 

is

he gain and G 

∗−(1 − F ρ (ρ)) 1 
ρ≥F −1 

ρ (1 −z ∗
1 
) 

is the loss. The optimal ter-

inal wealth having a gain or a loss is determined by the terminal

tate density price being lower or higher than a single threshold

 

−1 
ρ (1 − z ∗

1 
) , where z ∗

1 
is optimal for problem (4.1) . 

After some simple calculations, we find that the efficient fron-

ier of problem (2.2) is 

 

 [ x (T )] = ̃

 V [ X 

∗] = λ+ a ∗+ − μ+ y ∗+ + λ−a ∗+ − μ−(y ∗+ − y 0 ) 

= λ+ a ∗+ − μ+ y ∗+ + λ−a ∗+ − μ−y ∗+ + μ−x 0 − μ−k E (ρ) , 

here (λ+ , μ+ ) , (λ−, μ−) are the unique Lagrange multipliers for

he positive and negative part problems respectively. Note that

+ , μ+ , and λ−, μ− depend on (z ∗
1 
, a ∗+ , y ∗+ ) , which are optimal

alues for problem (4.1) . Moreover, λ−, μ− depend on k . 

In order to obtain the scheme of the efficient strategy from

roblem (2.2) , we let w + (z) be a concave probability distortion

unction, meaning that w 

′ + (z) is decreasing for z ∈ (0, 1) and

 

′ + (1 − z) is increasing for z ∈ (0, 1), then M + (z) = 

F −1 
ρ (1 −z) 

w 

′ + (1 −z) 
is de-

reasing. It follows that M + (z) , with z ∈ ( z 1 , 1), is included in Case

 with E 

z 1 + (ρ) ∈ [ M + (1) , M + (z 1 )) and z 0+ = z 1 , or equivalently, in

ase 3 with E 

z 1 + (ρ) ∈ [ M + (1) , M + (z 1 )) and z 0+ = 1 . 

Further, let w −(z) be a convex probability distortion function,

hen w 

′ −(z) is increasing for z ∈ (0, 1). Thus M −(z) = 

F −1 
ρ (1 −z) 

w 

′ −(z) 
is

ecreasing. It follows that M −(z) , z ∈ (0, z 1 ), is included in Case

 with E 

z 1 − (ρ) ∈ (M −(z 1 ) , M −(0)] and z 0 − = 0 , or equivalently, in

ase 3 with E 

z 1 − (ρ) ∈ [ M −(z 1 ) , M −(0)) and z 0 − = z 1 . 

From this result, we know that there is no feasible solu-

ion for problem (2.11) and problem (2.12) if a + E 

z 1 + (ρ) < y 0 +
 + E 

z 1 − (ρ) and y + ∈ (a + E 

z 1 + (ρ) , y 0 + a + E 

z 1 − (ρ)) . So the optimal val-

es of (z 1 , a + , y + ) for problem (4.1) must satisfy y 0 + a + E 

z 1 − (ρ) <

 + < a + E 

z 1 + (ρ) and then μ+ > 0 , μ− < 0 . The optimal solutions

or problems (2.11) and (2.12) are G 

∗+ (z) = [ λ+ − μ+ M + (z)] + 1 z 1 <z≤1 

nd G 

∗−(z) = [ λ− − μ−M −(z)] + 1 0 <z≤z 1 
. Consequently, the optimal

olution for problem (2.8) is 

 

∗(z) = G 

∗
+ (z) − G 

∗
−(z) 

= [ λ+ − μ+ M + (z) ] 
+ 

1 z 1 <z≤1 − [ λ− − μ−M −(z) ] 
+ 

1 0 <z≤z 1 . 

Moreover, the optimal terminal cash flow is 

 

∗ = k + [ λ+ −μ+ M + (1 − F ρ (ρ)) ] 
+ 

1 ρ<F −1 
ρ (1 −z ∗

1 
) 

−[ λ−−μ−M −(1 − F ρ (ρ)) ] 
+ 

1 ρ≥F −1 
ρ (1 −z ∗

1 
) 

= k + 

[
λ+ − μ+ 

ρ

w 

′ + (F ρ (ρ)) 

]+ 
1 ρ<c ∗

−
[
λ− − μ−

ρ

w 

′ −(1 − F ρ (ρ)) 

]+ 
1 ρ≥c ∗

here c ∗ := F −1 
ρ (1 − z ∗

1 
) . 

Recall that the optimal portfolio π ∗( · ) is the replicating

ortfolio for the claim x (T ) = X ∗. Let ( x 1 ( · ), π1 ( · )) replicate

, ( x 2 ( · ), π2 ( · )) replicate [ λ+ − μ+ ρ
w 

′ + (F ρ (ρ)) 
] + 1 ρ<c ∗ , and ( x 3 ( · ),

3 ( · )) replicate [ λ− − μ− ρ
w 

′ −(1 −F ρ (ρ)) 
] + 1 ρ≥c ∗ . Then, the claim is

hat x (t) = kx 1 (t) + x 2 (t) − x 3 (t) , and the replicating portfolio

or the claim x ( t ), is π(t) ( = π ∗(t) ) = kπ1 (t) + π2 (t) − π3 (t) (see

ielecki et al., 2005 ). 
To give the explicit form of the claim, x ( t ), and the strategy,

( t ), we assume that all market parameters are deterministic and

ime-invariant, i.e., r ( · ) ≡ r , B ( · ) ≡ B , σ ( · ) ≡σ and θ ( · ) ≡ θ . In this

ase, ρ(t, T ) := 

ρ(T ) 
ρ(t) 

follows a log-normal distribution with the pa-

ameters ( ̃  ηt , ˜ σt ) , where 

˜ t := −
(

r + 

θ2 

2 

)
(T − t) and ˜ σ 2 

t := θ2 (T − t) . 

(T ) = ρ(0 , T ) follows a log-normal distribution with the param-

ters ( ̃  η0 , ˜ σ0 ) . Let �( · ) and φ( · ) be the cumulative distribution

unction and the density function of the standard normal distribu-

ion, respectively. 

Using (2.4) , we have 

 1 (t) = e r(t−T ) , 

 2 (t) = E 

{
ρ(t, T ) 

[
λ+ − μ+ 

ρ

w 

′ + (F ρ (ρ)) 

]+ 
1 ρ<c ∗ |F t 

}
= E 

{
ρ(t, T ) 

[
λ+ − μ+ 

ρ(t, T ) ρ(t) 

w 

′ + (F ρ(T ) (ρ(t, T ) ρ(t))) 

]+ 
1 

ρ(t,T ) < c ∗
ρ(t) 

|F t 
}

= 

∫ c ∗
ρ(t) 

0 

y 

⎡ ⎣ λ+ − μ+ 
yρ(t) 

w 

′ + 
(
�
(

ln y + ln ρ(t) − ˜ η0 
˜ σ0 

))
⎤ ⎦ 

+ 

d�

(
ln y − ˜ ηt 

˜ σt 

)
: = g 2 (t, ρ(t)) . 

nd 

 3 (t) = E 

{
ρ(t, T ) 

[
λ− − μ−

ρ

w 

′ −(1 − F ρ (ρ)) 

]+ 
1 ρ≥c ∗ |F t 

}
= E 

{
ρ(t, T ) 

[
λ− − μ−

ρ(t, T ) ρ(t) 

w 

′ −(1 − F ρ(T ) (ρ(t, T ) ρ(t))) 

]+ 
1 

ρ(t,T ) ≥ c ∗
ρ(t) 

|F t 
}

= 

∫ + ∞ 

c ∗
ρ(t) 

y 

⎡ ⎣ λ− − μ−
yρ(t) 

w 

′ −
(

1 − �
(

ln y + ln ρ(t) − ˜ η0 
˜ σ0 

))
⎤ ⎦ 

+ 

d�

(
ln y − ˜ ηt 

˜ σt 

)
: = g 3 (t, ρ(t)) . 

t is well-known (e.g. Bielecki et al., 2005 ) that the replicating port-

olio of x 1 ( t ), x 2 ( t ), x 3 ( t ) are 

1 (t) = 0 , 

2 (t) = −(σσ� ) −1 B 
∂g 2 (t, ρ) 

∂ρ
ρ(t) , 

3 (t) = −(σσ� ) −1 B 
∂g 3 (t, ρ) 

∂ρ
ρ(t) . 

his allows us to obtain the explicit form of ( x ( t ), π ∗( t )). 

emark 6.2. In the above paragraphs, we conclude that the efficient

rontier of problem (2.2) is 

 

 [ x (T )] = λ+ a ∗+ − μ+ y ∗+ + λ−a ∗+ − μ−y ∗+ + μ−x 0 − μ−k E (ρ) . 

t seems that the variance is a linear function of the target return

 . But actually, when we can derive the explicit solution of λ− and

− (such as the cases in Theorem 4.1 ), we have 

− = 

y + −y 0 −a + E 
z 1 − (ρ) ∫ z 1 

0 
w ′ − (z) dz { ∫ z 1 

z ∗−
[ M −(z ∗−) −M −(z)] 

w ′ − (z) ∫ z 1 
0 

w ′ − (x ) dx 
dz 

} 2 
−∫ z 1 z ∗−

[ M −(z ∗−) −M −(z)] 2 
w ′ − (z) ∫ z 1 

0 
w ′ − (x ) dx 

dz 

nd 

− = 

a + ∫ z 1 
0 w 

′ −(z) dz 
+ μ−E 

z 1 − (ρ) , 

n (4.6) . Recall that 

 0 := x 0 − k E (ρ) . 
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Fig. 7. M + (z) in Section 7 . 

Table 1 

z 1 , z ∗+ , E 
z 1 + (ρ) , R (z 1 , z 

∗
+ ) , E 

z 1 − (ρ) . 

z 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

z ∗+ 0.8686 0.8207 0.7741 0.7266 0.6782 0.6284 0.70 0 0 0.80 0 0 0.90 0 0 

E 
z 1 + (ρ) 0.6867 0.6198 0.5866 0.5724 0.5741 0.5935 0.6396 0.7398 1.0154 

R (z 1 , z 
∗
+ ) 1.5380 1.3298 1.2067 1.1275 1.0807 1.0646 1.0980 1.2681 1.7620 

E 
z 1 − (ρ) 33.9467 12.5555 6.8549 4.4042 3.0967 2.3057 1.7858 1.4232 1.1583 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

v + (z 1 , a + , y + ) with z 1 = 0 . 1 , z ∗+ = 0 . 8686 , E z 1 + (ρ) = 0 . 6867 , R (z 1 , z 
∗
+ ) = 1 . 5380 . 

y + 0.7 0.8 0.9 1.0 1.1 1.2 1.3 

v + (0 . 1 , 1 , y + ) 1.2820 5.4052 16.0145 33.1100 56.6916 86.7595 123.3135 

y + 0.35 0.40 0.45 0.50 0.55 0.60 0.65 

v + (0 . 1 , 0 . 5 , y + ) 0.3205 1.3513 4.0036 8.2775 14.1729 21.6899 30.8284 

a + 0.8 0.9 1.0 1.1 1.2 1.3 1.4 

v + (0 . 1 , a + , 1) 66.7045 48.3669 33.1100 20.9337 11.8381 5.8232 2.8889 

a + 0.40 0.45 0.50 0.55 0.60 0.65 0.70 

v + (0 . 1 , a + , 0 . 5) 16.6761 12.0917 8.2775 5.2334 2.9595 1.4558 0.7222 

Table 3 

v + (z 1 , a + , y + ) with z 1 = 0 . 3 , z ∗+ = 0 . 7741 , E z 1 + (ρ) = 0 . 5866 , R (z 1 , z 
∗
+ ) = 1 . 2067 . 

y + 0.6 0.7 0.8 0.9 1.0 1.1 1.2 

v + (0 . 3 , 1 , y + ) 2.0648 5.0635 12.7699 25.1840 42.3057 64.1351 90.6721 

y + 0.30 0.35 0.40 0.45 0.50 0.55 0.60 

v + (0 . 3 , 0 . 5 , y + ) 0.5162 1.2659 3.1925 6.2960 10.5764 16.0338 22.6680 

a + 1.1 1.2 1.3 1.4 1.5 1.6 1.7 

v + (0 . 3 , a + , 1) 32.1206 23.5942 16.7265 11.5174 7.9670 6.0752 5.8421 

a + 0.55 0.60 0.65 0.70 0.75 0.80 0.85 

v + (0 . 3 , a + , 0 . 5) 8.0302 5.8986 4.1816 2.8793 1.9917 1.5188 1.4605 

Table 4 

v + (z 1 , a + , y + ) with z 1 = 0 . 5 , z ∗+ = 0 . 6782 , E z 1 + (ρ) = 0 . 5741 , R (z 1 , z 
∗
+ ) = 1 . 0807 . 

y + 0.58 0.66 0.74 0.82 0.90 0.98 1.06 

v + (0 . 5 , 1 , y + ) 3.9686 5.5298 9.7914 16.7535 26.4161 38.7792 53.8427 

y + 0.29 0.33 0.37 0.41 0.45 0.49 0.53 

v + (0 . 5 , 0 . 5 , y + ) 0.9922 1.3824 2.4478 4.1884 6.6040 9.6948 13.4607 

a + 1.0 1.1 1.2 1.3 1.4 1.5 1.6 

v + (0 . 5 , a + , 1) 42.2919 33.4988 26.1740 20.3174 15.9290 13.0089 11.5571 

a + 0.50 0.55 0.60 0.65 0.70 0.75 0.80 

v + (0 . 5 , a + , 0 . 5) 10.5730 8.3747 6.5435 5.0793 3.9823 3.2522 2.8893 

v  

d  

v

 

T  

v  

w  

s

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

W
−

 

So both λ− and μ− are linear in k . Then the variance is a quadratic

function of k . 

If we can derive the explicit solution of λ− and μ−, then both λ−
and μ− are linear in k . We may conjecture that the variance may

be a quadratic function of k in general. 

7. Numerical examples 

In this section, we give some numerical examples to illustrate

our results according to the result in Section 4 . We assume that ρ
follows a log-normal distribution with the parameters ( ̃  η, ˜ σ 2 ) . We

take w + (z) = z γ for γ = 2 , it is not difficult to verify that M + (z) =
F −1 
ρ (1 −z) 

w 

′ + (1 −z) 
is included in Case 3. Take ˜ η = −0 . 6 , ˜ σ = 1 , x 0 = 0 . 5 , T =

1 , and then we have E (ρ) = 0 . 9048 . Using MATLAB, we obtain the

following numerical results. 

First of all, we show M + (z) in Fig. 7 . We find that M + (z) attains

its minimum value at z 0 = 0 . 6162 , and M + (0 . 6162) = 0 . 5320 . 

Next we give the numerical results of v + (z 1 , a + , y + ) , which is

the optimal value for the positive part problem (2.11) . According

to Theorem 4.1 (i), we know that if (4.2) is satisfied, the optimal

solution G 

∗+ (z) and the optimal value v + (z 1 , a + , y + ) are given in

Theorem 4.1 . In the following, we assume that (4.2) is satisfied. 

We denote the right side of equation (4.2) as 

R (z 1 , z 
∗
+ ) := 

∫ 1 
z ∗+ 

M + (z) 
[
M + (z) − M + (z ∗+ ) 

]
w 

′ 
+ (1 −z) ∫ 1 

z 1 
w 

′ + (1 −x ) dx 
dz ∫ 1 

z ∗+ 
[ M + (z) − M + (z ∗+ ) ] 

w 

′ + (1 −z) ∫ 1 
z 1 

w 

′ + (1 −x ) dx 
dz 

. 

We choose values for (z 1 , a + , y + ) that satisfy condition (4.2) in

Theorem 4.1 i). We show the numerical values of z 1 , z ∗+ , E 

z 1 + (ρ)

and R (z 1 , z 
∗+ ) in Table 1 . Note that z ∗+ is given in (3.6) . E 

z 1 + (ρ) =∫ 1 
z 1 

F −1 
ρ (1 −z) dz ∫ 1 

z 1 
w 

′ + (1 −z) dz 
and R (z 1 , z 

∗+ ) are determined by z 1 . When z 1 ≥ z 0 =
0 . 6162 , we get z ∗+ = z 1 , which is determined by the shape of M + (z)

and the definition of z ∗+ . From Table 1 , we can see that: when the
alue of z 1 increases, the values of z ∗+ , E 

z 1 + (ρ) and R (z 1 , z 
∗+ ) initially

ecrease, but later start to increase after reaching the minimum

alue at some z ∈ [ z 1 , 1). 

Based on condition (4.2) and v + (z 1 , a + , y + ) given by (4.4) in

heorem 4.1 (i), we are ready to give the numerical values of

 + (z 1 , a + , y + ) . We take z 1 = 0 . 1 , 0 . 3 and 0.5, respectively, and then

e give the corresponding v + (z 1 , a + , y + ) in Tables 2 , 3 and 4 , re-

pectively. 

• The numerical solution of v + (z 1 , a + , y + ) with z 1 = 0 . 1 is placed

in Table 2 . First, we keep a + = 1 and 0.5, respectively, and see

what happens when we alter the value of y + . From Table 2 ,

we see that, for a fixed z 1 and a + , v + (z 1 , a + , y + ) increases as

y + increases. Second, we keep y + = 1 and 0.5, respectively, and

see what happens when we alter the value of a + . We find that,

for a fixed z 1 and y + , v + (z 1 , a + , y + ) decreases as a + increases.

v + (z 1 , a + , y + ) attains a very small value when a + is big and

y + is small. For example, when a + = 0 . 0145 and y + = 0 . 01 , we

have v + (0 . 1 , 0 . 0145 , 0 . 01) = 2 . 5771 × 10 −4 . 
• We show the numerical solution of v + (z 1 , a + , y + ) with z 1 =

0 . 3 in Table 3 . Follow the same steps as above, then we get

similar conclusions as we did above. v + (z 1 , a + , y + ) attains a

very small value when a + is big and y + is small, for example,

v + (0 . 3 , 0 . 0170 , 0 . 01) = 5 . 8421 × 10 −4 . 
• We provide the numerical solution of v + (z 1 , a + , y + ) with z 1 =

0 . 5 in Table 4 . Follow the same steps as above, then we get

the similar conclusions as we did above. v + (z 1 , a + , y + ) attains

a very small value when a + is big and y + is small, for example,

v + (0 . 5 , 0 . 0174 , 0 . 01) = 0 . 0012 . 

Finally, we give the numerical solution of the efficient fron-

ier. We assume that w −(z) has the form w −(z) = z γ for γ = 2 .

e can verify that M −(z) = 

F −1 
ρ (1 −z) 

w 

′ (z) 
is strictly decreasing across
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Fig. 8. M −(z) in Section 7 . 
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Fig. 9. The efficient frontier in Section 7 . 

( ow μ− ≥ 0 when a + E 

z 1 + (ρ) ≤ y 0 + a + E 

z 1 − (ρ) and y + ∈ [ a + E 

z 1 + (ρ) , y 0 + 

a Insert G −(z) ≡ G into the constraints in (2.12) , then we have y + − y 0 = 

a Recall that y 0 = x 0 − k E (ρ)(≤ 0) , then we get 

v ) 

 − M + (z) ] 
w 

′ + (1 −z) ∫ 1 
z 1 

w 

′ + (1 −x ) dx 
d z 

}2 
+ 

a 2 + ∫ 1 
z 1 

w 

′ + (1 − z) dz 
+ 

a 2 + ∫ z 1 
0 w 

′ −(z) dz 
. 

ze ˆ v (z 1 , a + ) . Because we have the explicit form of ˆ v (z 1 , a + ) , it is not 

d al (z 1 , a + ) as (z ∗
1 
, a ∗+ ) . So the efficient frontier is 

Ṽ

[ x 0 −k E (ρ)+ a ∗+ E 
z 1 − (ρ) −a ∗+ E 

z 1 + (ρ)] 2 ∫ 1 
z ∗
1 

w 

′ + (1 −z) dz 

 

∗+ ) − M + (z) ] 
2 w 

′ + (1 −z) ∫ 1 
z ∗
1 

w 

′ + (1 −x ) dx 
d z −

{∫ 1 
z ∗+ 

[ M + (z ∗+ ) − M + (z) ] 
w 

′ + (1 −z) ∫ 1 
z ∗
1 

w 

′ + (1 −x ) dx 
d z 

}2 
. 

(7.1) 

 been obtained in Zhou and Li (20 0 0) as 

V  (7.2) 

B

0,1). We show M −(z) in Fig. 8 . According to Section 4.1 , we kn

 + E 

z 1 − (ρ)] . So the optimal solution for problem (3.2) is G −(z) ≡ G . 

 + E 

z 1 − (ρ) , G −(z) ≡ G = 

a + ∫ z 1 
0 

w 

′ −(z) dz 
, and v −(z 1 , a + , y + ) = 

a 2 + ∫ z 1 
0 

w 

′ −(z) dz 
. 

ˆ 
 (z 1 , a + ) : = v + (z 1 , a + , y 0 + a + E 

z 1 − (ρ)) + v −(z 1 , a + , y 0 + a + E 

z 1 − (ρ)

= 

[ x 0 −k E (ρ)+ a + E z 1 − (ρ) −a + E 
z 1 + (ρ)] 2 ∫ 1 

z 1 
w 

′ + (1 −z) dz 

∫ 1 
z ∗+ 

[ M + (z ∗+ ) − M + (z) ] 
2 w 

′ + (1 −z) ∫ 1 
z 1 

w 

′ + (1 −x ) dx 
d z −

{∫ 1 
z ∗+ 

[ M + (z ∗+ )

In the second step, we need to choose a z 1 and a + to minimi

ifficult to solve the problem in second step. We denote the optim

 

 (x (T )) = 

ˆ v (z ∗1 , a 
∗
+ ) = 

(a ∗+ ) 
2 ∫ 1 

z ∗
1 

w 

′ + (1 − z) dz 
+ 

(a ∗+ ) 
2 ∫ z ∗

1 

0 
w 

′ −(z) dz 
+ ∫ 1 

z ∗+ 
[ M + (z

The efficient frontier when there is no probability distortion has

 (x (T )) := Var (x (T )) = 

1 

2 . 71828 − 1 

[
E x ( T ) − 0 . 5 ∗ 2 . 71828 

0 . 1 
]2 

.

oth (7.1) and (7.2) are plotted on the same plane; see Fig. 9 . 



662 J. Bi et al. / European Journal of Operational Research 271 (2018) 644–663 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 ;

 

 

 

S

 

f

R

A  

B  

 

B  

 

B  

 

C  

C  

 

D  

 

E  

F  

G  

H  

 

H  

J  

 

Note that the efficient frontier in our example, i.e., when

the probability distortion functions have forms w + (z) = z γ and

w −(z) = z γ for some γ > 1, is also the quadratic function of the

terminal distorted expectation, k , which is the same as the effi-

cient frontier in the traditional mean-variance portfolio selection

problem. From Fig. 9 we can see that, the efficient frontier when

there exists probability distortion rises above that when there is no

probability distortion, i.e., the insurer can reach a lower risk when

there exists probability distortion than that when there is no prob-

ability distortion with the same profit. 

8. Conclusion 

This paper formulates and studies the behavioral mean-variance

portfolio selection problem. The probability distortion (or nonlin-

ear expectation) destroys the time consistency, which is necessary

for the dynamic programming approach, as well as the convex-

ity, which is necessary for the convex duality approach. We turn

the non-convex minimization problem into a convex minimization

problem by changing the decision variable and performing a series

of transformations. Then we use the Lagrange method to solve the

convex minimization problem. 

To further extend our solution scheme, it will be of interest to

study the following problems: 

First, in order to reflect the characteristics of the real fi-

nancial market more exactly, one could build a more com-

plex but real mathematical model. For example, we can investi-

gate the behavioral mean-variance portfolio selection problems in

continuous-time under the constraint that short-selling of stocks

is not allowed. On the other hand, we would consider the be-

havioral continuous-time mean-variance portfolio selection with a

bankruptcy prohibition, i.e., the wealth process under any admissi-

ble trading strategy is not allowed to be below zero at any time. 

Second, because the problem of optimal investment-reinsurance

for an insurer has attracted more and more attention in the past

two decades, we could try to introduce the behavioral finance

to the insurance company. Then we could consider the optimal

behavioral mean-variance investment-reinsurance problem for an

insurer. 
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Appendix A. The proof of Lemma 3.2 

Proof. 

(i) Assume M + (z) is in Case 1. The result of M + (z) in Case 2

with E 

z 1 + (ρ) > M + (z 1 ) can be derived similarly. Because of

μ+ < 0 , λ+ − μ+ M + (z) is included in Case 1. By Lemma 3.1,

the optimal solution for (3.4) has the form 

G 

∗
+ (z) = [ λ+ − μ+ M + (z) ] 1 z 1 <z≤z 2 + [ λ+ − μ+ M + (z 2 ) ] 1 z 2 <z≤1 , 

where z 2 is to be determined. Then problem (3.4) reduces

to 

min 

z 2 ∈ [ ̄z 0+ ,z 0+ ] 
μ2 

+ 

∫ 1 

z 2 

w 

′ 
+ (1 − z) [ M + (z 2 ) − M + (z) ] 

2 
dz. 

where z̄ 0+ ∈ (z 1 , z 0+ ) is the value at which M + ( ̄z 0+ ) = M + (1) .
Denote 

N(z 2 ) = 

∫ 1 

z 2 

w 

′ 
+ (1 − z)[ M + (z 2 ) − M + (z)] 2 dz, z 2 ∈ [ ̄z 0+ , z 0+ ]

we aim to find the minimizer of N ( z 2 ) over [ ̄z 0+ , z 0+ ] . Notice

that 

N 

′ (z 2 ) = 2 M 

′ 
+ (z 2 ) 

∫ 1 

z 2 

w 

′ 
+ (1 − z)[ M + (z 2 ) − M + (z)] dz 

= 2 M 

′ 
+ (z 2 ) n (z 2 ) , 

where 

n (z 2 ) = 

∫ 1 

z 2 

w 

′ 
+ (1 − z)[ M + (z 2 ) − M + (z)] dz. 

And M 

′ + (z 2 ) > 0 , z 2 ∈ [ ̄z 0+ , z 0+ ] . Thanks to the shape of M ( · ),

we know that 

n ( ̄z 0+ ) = 

∫ 1 

z̄ 0+ 
w 

′ 
+ (1 − z)[ M + ( ̄z 0+ ) − M + (z)] dz < 0 , 

n (z 0+ ) = 

∫ 1 

z 0+ 
w 

′ 
+ (1 − z)[ M + (z 0+ ) − M + (z)] dz > 0 , 

n 

′ (z 2 ) = 

∫ 1 

z 2 

w 

′ 
+ (1 − z) M 

′ 
+ (z 2 ) dz > 0 , z 2 ∈ [ ̄z 0+ , z 0+ ] . 

So, there exists a unique z ∗+ ∈ [ ̄z 0+ , z 0+ ] which satisfies 

n (z ∗+ ) = 

∫ 1 

z ∗+ 
w 

′ 
+ (1 − z)[ M + (z ∗+ ) − M + (z)] dz = 0 . 

(ii) The proof of (ii) follows a similar argument to that of (i).

Then we finish the proof. 

�

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.ejor.2018.05.065 . 

eferences 

llais, M. (1953). Le comportement de l’homme rationnel devant le risque, critique
des postulats et axiomes de l’ecole americaine. Econometrica, 21 , 503–546 . 

i, J. , Zhong, Y. , & Zhou, X. Y. (2013). Mean-semivariance portfolio selection un-
der probability distortion. Stochastics-An International Journal of Probability and

Stochastic Processes, 85 (4), 604–619 . 

ielecki, T. R. , Jin, H. , Pliska, S. R. , & Zhou, X. Y. (2005). Continuous-time mean-vari-
ance portfolio selection with bankrutcy probihition. Mathematical Finance, 15 ,

213–244 . 
rocklesby, J. (2016). The what, the why and the how of behavioural operational

research–an invitation to potential sceptics. European Journal of Operational Re-
search, 249 , 796–805 . 

illo, A. , & Delquié, P. (2014). Mean-risk analysis with enhanced behavioral content.

European Journal of Operational Research, 239 , 764–775 . 
ui, X. , Gao, J. , Li, X. , & Li, D. (2014). Optimal multi-period mean-variance pol-

icy under no-shorting constraint. European Journal of Operational Research, 234 ,
459–468 . 

ang, D. M. , & Forsyth, P. A. (2016). Better than pre-commitment mean-variance
portfolio allocation strategies: A semi-self-financing hamilton-jacobi-bellman

equation approach. European Journal of Operational Research, 250 (3), 827–841 . 

llesberg, D. (1961). Risk, ambiguity and the savage axioms. Quarterly Journal of Eco-
nomics, 75 , 643–669 . 

riedman, M. , & Savage, L. J. (1948). The utility analysis of choices involving risk.
Journal of Political Economy, 56 , 279–304 . 

omes, F. J. (2005). Portfolio choice and trading volume with loss-averse investors.
Journal of Business, 78 (2), 675–706 . 

e, X. D. , Hu, S. , Obłój, J. , & Zhou, X. Y. (2017). Technical note—path-dependent and
randomized strategies in barberis’ casino gambling model. Operations Research,

65 (1), 97–103 . 

e, X. D. , & Zhou, X. Y. (2011). Portfolio choice via quantiles. Mathematical Finance,
21 (2), 203–231 . 

in, H. , & Zhou, X. Y. (2008). Behavioral portfolio selection in continuous time.
Mathematical Finance, 18 , 385–426 . Erratum. (2010). Mathematical Finance, 20,

521–525 

https://doi.org/10.13039/501100001809
https://doi.org/10.1016/j.ejor.2018.05.065
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0001
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0001
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0002
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0002
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0002
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0002
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0002
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0003
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0003
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0003
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0003
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0003
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0003
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0005
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0005
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0006
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0006
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0006
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0006
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0007
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0007
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0007
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0007
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0007
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0007
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0008
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0008
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0008
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0008
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0009
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0009
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0010
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0010
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0010
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0010
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0011
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0011
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0012
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0012
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0012
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0012
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0012
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0012
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0013
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0013
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0013
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0013
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0014
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0014
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0014
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0014
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0014


J. Bi et al. / European Journal of Operational Research 271 (2018) 644–663 663 

J  

K  

K  

L  

L  

 

L  

L  

L  

 

M
M  

M  

M  

R  

T  

Y  

Y  

 

Z  
in, H. , & Zhou, X. Y. (2013). Greed, leverage, and potential losses: A prospect theory
perspective. Mathematical Finance, 23 (1), 122–142 . 

ahneman, D. , & Tversky, A. (1979). Prospect theory: An analysis of decision under
risk. Econometrica, 47 , 263–291 . 

aroui, N. E. , Peng, S. , & Quenez, M. C. (1997). Backward stochastic differential equa-
tions in finance. Mathematical Finance, 7 , 1–71 . 

evy, H. , & Levy, M. (2004). Prospect theory and mean-variance analysis. Review of
Financial Studies, 17 (4), 1015–1041 . 

i, X. , Zhou, X. Y. , & Lim, A. E. B. (2002). Dynamic mean-variance portfolio selec-

tion with no-shorting constraints. SIAM Journal on Control and Optimization, 40 ,
1540–1555 . 

ioui, A. , & Poncet, P. (2016). Understanding dynamic mean variance asset allocation.
European Journal of Operational Research, 254 (1), 320–337 . 

opes, L. L. (1987). Between hope and fear: The psychology of risk. Advances in Ex-
perimental Social Psychology, 20 , 255–295 . 

opes, L. L. , & Oden, G. C. (1999). The role of aspiration level in risk choice: A com-

parison of cumulative prospect theory and sp/a theory. Journal of Mathematical
Psychology, 43 , 286–313 . 
arkowitz, H. (1952). Portfolio selection. The Journal of Finance, 7 , 77–91 . 
arkowitz, H. (2014). Mean-variance approximations to expected utility. European

Journal of Operational Research, 234 , 346–355 . 
ehra, R. , & Prescott, E. C. (1985). The equity premium: A puzzle. Journal of mone-

tary Economics, 15 , 145–161 . 
erton, R. C. (1972). An analytical derivation of the efficient portfolio frontier. Jour-

nal of Financial and Quantitative Analysis, 7 , 1851–1872 . 
ay, P. , & Jenamani, M. (2016). Mean-variance analysis of sourcing decision under

disruption risk. European Journal of Operational Research, 250 (2), 679–689 . 

versky, A. , & Kahneman, D. (1992). Advances in prospect theory: Cumulative rep-
resentation of uncertainty. Journal of Risk and Uncertainty, 5 , 297–323 . 

aari, M. E. (1987). The dual theory of choice under risk. Econometrica, 55 (1),
95–115 . 

ao, H. , Li, Z. , & Li, D. (2016). Multi-period mean-variance portfolio selection with
stochastic interest rate and uncontrollable liability. European Journal of Opera-

tional Research, 252 , 837–851 . 

hou, X. Y. , & Li, D. (20 0 0). Continuous time mean-variance portfolio selection: A
stochastic LQ framwork. Applied Mathematics and Optimization, 42 , 19–33 . 

http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0015
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0015
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0015
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0015
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0016
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0016
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0016
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0016
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0017
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0017
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0017
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0017
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0017
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0018
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0018
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0018
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0018
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0019
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0019
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0019
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0019
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0019
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0020
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0020
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0020
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0020
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0021
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0021
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0022
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0022
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0022
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0022
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0023
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0023
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0024
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0024
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0025
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0025
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0025
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0025
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0026
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0026
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0027
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0027
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0027
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0027
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0028
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0028
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0028
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0028
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0029
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0029
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0030
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0030
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0030
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0030
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0030
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0031
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0031
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0031
http://refhub.elsevier.com/S0377-2217(18)30484-3/sbref0031

	Behavioral mean-variance portfolio selection
	1 Introduction
	2 Problem formulation
	2.1 The financial market
	2.2 The behavioral mean-variance problem
	2.3 Problem formulation via quantile
	2.4 Splitting into positive part and negative part
	2.5 The feasibility of problems (2.8), (2.9) and (2.10)

	3 Optimal solution for the positive part problem and negative part problem
	3.1 Problem transformation
	3.2 The auxiliary problem
	3.3 The optimal solution for problems (2.11) and (2.12) if 
	3.3.1 The optimal solution for the positive part problem (2.11)
	3.3.2 The optimal solution for the negative part problem (2.12)

	3.4 The optimal solution for problems (2.11) and (2.12) if 
	3.4.1 The optimal solution for the positive part problem (2.11)
	3.4.2 The optimal solution for the negative part problem (2.12)


	4 The optimal attainable wealth
	4.1 The optimal quantile when 
	4.2 The optimal quantile when 
	4.3 Discussion of an extreme case of the optimal attainable wealth

	5 Examples
	6 The efficient frontier and the efficient strategy
	7 Numerical examples
	8 Conclusion
	 Acknowledgements
	Appendix A The proof of Lemma 3.2
	 Supplementary material
	 References


